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Abstract

In this thesis, the consequences of automating network management of telephone net-

works are examined. The role of network managers is to monitor the network for ex-

ceptional conditions and place controls into the network if necessary to deal with these

network exceptions. One potential consequence of automating network management is

a network which is capable of adjusting itself quickly to changing tra�c conditions, also

known as a network with dynamic routing. Simulations are used to show that there are

bene�ts to be gained from implementing dynamic routing by automating the actions of

the network managers.

In this thesis, the application of learning techniques such as neural networks and linear

predictors to the tasks of network tra�c management is also examined. Three network

management tasks considered are: (i) recognition of tra�c patterns in the network (ii)

learning suitable thresholds for network congestion control and (iii) time series prediction

of trunk group occupancy. It is found that non-linear learning techniques such as neural

networks can give small gains over the more standard technique of linear predictors.
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Preface

We live in an age in which computers and computer software are becoming more and

more an integral part of the society that we live in. Arti�cial Intelligence (AI) has made

dramatic progress over the past thirty years, and there is plenty of scope for further

research. Examples of progress are the development of theories of inference for expert

systems and a better understanding of the capabilities and limitations of neural networks.

In the years to come, I believe we will �nd closer and closer ties between AI �elds and

the �elds of statistical modeling and inference. The bene�ts of robust automated learning

techniques that may result from this synergy are enormous.
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Chapter 1

Introduction

1.1 Purpose

For some years, Caltech and Paci�c Bell have cooperated to develop an expert system to

aid network managers in their job of continually monitoring and controlling the telephone

network. Some interesting opportunities for research have resulted from this work. The

results are described in this thesis.

The purpose in writing this thesis was twofold:

� To quantify the bene�ts of using tools that were intended for network management to

improve routing of calls from origin to destination in typical Regional Bell telephone

networks. An analysis was also carried out of whether such an approach is always

stable.

� To demonstrate the applicability of learning systems known as neural networks to

problems that arise in day to day management of telephone networks.

Both goals have been successfully achieved.

1.2 Roadmap

This thesis is composed of a number of separate tra�c studies grouped into two parts.

These parts are:

� Bene�ts of dynamic routing

� Application of learning techniques to network management

Dynamic routing is a means of routing telephone tra�c from its origin to its destination

using automatic routing adjustments to handle changing network conditions.

Network management is presently very much a manual activity consisting of monitoring

the telephone network to diagnose the cause of any network failures or exceptions and

placing controls in the network to reduce the impact of these failures or exceptions.
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Learning Techniques refers to the use of neural networks, linear predictors, or other

techniques for automatically detecting patterns in data and extrapolating based on those

patterns.

The impetus for all of these studies was a project called NOAA, Network Operations

Analyzer and Assistant, which was a joint project between Paci�c Bell and Caltech to

develop a system to automate network management. NOAA is described in Appendix A.

1.3 Tra�c Studies

To best understand the concepts and terminology used in this thesis, a review of tra�c

theory may be in order. [Sch87] or [Coo81] give more details for the interested reader.

1.3.1 Trunks and Trunk Groups

A telephone network can be modeled as a set of nodes and links. See Figure 1.1. Telephone

tra�c is carried on trunk groups. A trunk group is a set of trunks, each of which can

support a conversation. Trunk groups are used to link the o�ces. If all the trunks are

busy on a trunk group, then no new calls can be accepted on that trunk group. Typically

a switch makes a number of attempts to connect the call, but if all routes available to it

are busy, then the call is blocked.

The nodes are the telephone o�ces which act as switches for the telephone tra�c.

These o�ces route the tra�c onto the appropriate trunk groups depending on the number

dialed by the customer.

1.3.2 Random Arrivals

For network planning and modeling purposes, the usual assumption is that of random

arrivals[Sch87]. In other words, the probability of a call arriving in the next small time

interval is independent of call arrivals in the previous time intervals. This is also known

as memoryless arrivals.

This is an approximation because, if a call is blocked, the customer will usually try

again immediately. Thus, if a trunk group is fully occupied, the arrival rate will increase.

This phenomenon is usually not included in the model.

Let � denote the average arrival rate of new calls with units of calls per second. One

exception to the assumption of random arrivals is the special case of over
ow tra�c which
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Nodes (switching offices)

Links (trunk groups)

Figure 1.1: Telephone Network

is considered in Section 1.3.9.

1.3.3 Memoryless Holding Times

An assumption that is observed in practice is the assumption of memoryless holding

times[Coo81, Sch87]. In other words, the probability of a call completing in the next

small time interval is independent of how long the call has been in progress.

This leads to an exponential distribution of holding times. If T is a random variable

denoting the observed holding time of a call with units of seconds, then:

p(T < T1) = 1=Th

Z T1

u=0
exp(�u=Th)du (1.1)

From this the average holding time is obtained as Th seconds and the average rate at

which a call is serviced is de�ned as

� = 1=Th (1.2)

with units of calls per second. For telephone tra�c, Th is usually on the order of 180

seconds [DS84].

1.3.4 Tra�c

The tra�c is de�ned to be:

a =
�

�
(1.3)
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Figure 1.2: State Diagram

and the unit is taken to be Erlangs. The tra�c is a measure of the relative rate at which

calls are arriving in comparison to the rate at which they are being serviced. In general the

number of trunks will need to be larger than the o�ered tra�c if the blocking probability,

that is, the probability that a new call arriving to the network is blocked, is to be kept

low.

1.3.5 State Diagrams

Given N trunks, an arrival rate of � calls per second, and a departure rate of � calls per

second, the state of the trunk group is de�ned as the number of trunks that are occupied

on that trunk group. A state diagram which shows all the possible states of the trunk

group and the rate at which those states are being entered and exited can be drawn. Here

the circle with i in it, indicates the state of i trunks being occupied. This is illustrated in

Figure 1.2.

1.3.6 State Probabilities

From the state diagram and its implied di�erential equations, the state probabilities in

steady state can be found. De�ne pi(t) as the probability of i trunks occupied at time t.

Consider arrivals and departures during a small time interval dt. This gives a set of N +1

equations of the form:

dpi(t)

dt
= ��pi(t) + �pi�1(t)� i�pi(t) + (i+ 1)�pi+1(t) 1 � i < N (1.4)

dpi(t)

dt
= �pi�1(t)� i�pi(t) i = N (1.5)

dpi(t)

dt
= ��pi(t) + (i+ 1)�pi+1(t) i = 0 (1.6)

The total probability must always sum to 1:

NX
i=0

pi(t) = 1 (1.7)
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Thus from any initial state, the �nal state can be deduced by setting:

dpi(t)

dt
= 0 8i (1.8)

which gives:

pi =
ai=i!PN
j=0 a

j=j!
(1.9)

1.3.7 Erlang Tra�c Tables

From the above the blocking probability, B(a;N), which is the probability that all trunks

are occupied when a new call arrives, can be seen as:

B(a;N) =
aN=N !PN
j=0 a

j=j!
(1.10)

Equation 1.10 is known as the Erlang-B blocking equation [Coo81]. From this equation,

the number of trunks needed to keep the blocking probability low can be calculated. An

example of such a calculation assuming a 1% blocking probability is given in Table 1.1.

1.3.8 Poisson Distribution

If the number of trunks is large (N !1), then Equation 1.9 becomes:

pi = e�a
ai

i!
(1.11)

which is a Poisson distribution. Recall that a Poisson distribution with mean a has variance

equal to a.

1.3.9 First Routed and Over
ow Tra�c

The above has assumed random arrivals, also known as �rst routed tra�c. When a call

arrives to a telephone network, it is �rst attempted on a direct path to its destination if

one exists. If this attempt fails it is then tried on an alternate path.

In general, over
ow tra�c (tra�c that has over
owed from a direct path), will not

arrive at random instants of time. In other words, a previous arrival on a trunk group

carrying over
ow tra�c increases the likelihood of a future arrival.

For over
ow tra�c, the following equations [Coo81] apply. These equations are derived

using a more complicated state diagram which models the number of trunks occupied



6

Number of Trunks Maximum Tra�c (Erlangs)

0 0.00

1 0.01

2 0.15

3 0.45

4 0.86

5 1.36

6 1.90

7 2.50

8 3.12

9 3.78

10 4.46

11 5.15

12 5.87

13 6.60

14 7.35

15 8.10

16 8.87

17 9.65

18 10.43

25 16.12

50 37.90

100 84.06

Table 1.1: Maximum Tra�c Assuming 1% Blocking
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on the direct route and the number of trunks occupied on the over
ow route in a two

dimensional state diagram. The state probabilities can then be solved for.

De�ne � as the mean level of the over
ow tra�c that results from random tra�c of a

Erlangs being o�ered to a trunk group of size N . Then it can be shown:

� = aB(a;N) (1.12)

Note the use of the Blocking formula, Equation 1.10. De�ne v as the variance of the

over
ow tra�c. Then it can be shown:

v = �

�
1� �+

a

N + 1 + �� a

�
(1.13)

The derivation of the formula for the variance is not trivial. See [Coo81] for details. De�ne

the peakedness z as the ratio of the over
ow variance v to the mean over
ow tra�c level

�:

z = v=� (1.14)

For random arrivals, the value of z would be one. For over
ow tra�c, z is greater than

one. This is bad from the point of view of blocking because it means that more trunks

must be provided to cope with a given level of tra�c, because of its greater variability.

The worst case peakedness would occur when a small amount of tra�c over
ows from a

single large trunk group. In such a case, call arrivals would be highly clustered.

1.3.10 Numerical Example

For example, take the case of 210 Erlangs of o�ered tra�c on 200 trunks:

N = 200; a = 210:0: (1.15)

The calculations give 18.007 Erlangs of over
ow tra�c:

� = 18:007; v = 113:85; z = 6:307: (1.16)

Using a table of 1% blocking tells us that 231 trunks carry 209.8 � 210 Erlangs. Thus 31

trunks can carry the 18.007 Erlangs of over
ow tra�c with 1% blocking.

On the other hand, 27.2 trunks would be necessary to carry the 18.007 Erlangs of tra�c

if the 18.007 Erlangs represented \ordinary" tra�c. This demonstrates that over
ow tra�c

requires slightly more trunks than ordinary tra�c, because it has higher variability.
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Figure 1.3: Hierarchical Telephone Network Routing

1.4 Routing Arrangements in Telephone Networks

Routing arrangements in telephone networks usually follow either a hierarchical or non-

hierarchical arrangement. For example, presently Paci�c Bell uses hierarchical routing

and AT&T uses non-hierarchical routing.

1.4.1 Hierarchical Routing

In a hierarchical routing network, customers are connected to endo�ces which in turn are

connected to tandems. See Figure 1.3.

Endo�ces are the exchanges that serve customers and tandems are the exchanges used

for tra�c between endo�ces that are not directly connected.

In a hierarchical network, high usage trunk groups link o�ces that are close together

geographically. They are designed to over
ow to �nal trunk groups, which are the back-

bone of the network. This arrangement minimizes the total network cost.

1.4.2 Non-Hierarchical Routing

In a non-hierarchical network, each endo�ce can also act as a tandem. See Figure 1.4.

In a non-hierarchical network, a distinction is made between the direct path between

two endo�ces and an alternate path. A direct path is a direct route between two endo�ces.

An alternate path connects two endo�ces via an intermediate endo�ce.

1.5 Historical Perspective on Teletra�c Engineering

In the past 100 years, teletra�c engineering has become a recognized branch of engineering.

It was in 1917 that the Danish mathematician A. K. Erlang �rst published the blocking
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Endoffices

Figure 1.4: Non-Hierarchical Telephone Network Routing

formula, Equation 1.10, that bears his name [Coo81]. This blocking formula enables

calculating the correct size for any system with a �xed number of servers, random arrivals,

and memoryless holding times.

Developments since then have been made in network designs that use alternate routing.

An understanding of the nature of the over
ow tra�c distribution was obtained in the

1930's. The seminal paper on telephone network design is a 92 page paper by Wilkinson

in the 1956 Bell System Technical Journal [Wil56]. This paper needs surprisingly few

changes today, when applied to the planning of regional Bell telephone networks.

The most recent changes in telecommunications networks have been the addition of

a separate signaling network to handle message packets for call setup and routing, and a

move from analog voice transmission to digital with the consequent improvement in signal

quality over long distances. These changes have taken place gradually due to the necessity

to avoid costly write-o�s of the installed base of network equipment.

Over the coming years, Asynchronous Transfer Mode (ATM) technology can be ex-

pected to move from the laboratory to the telephone network. ATM is designed to carry

video as well as voice tra�c. This will result in big changes to the way networks are

designed and built. Exciting opportunities exist for the telephone companies, especially

those that succeed in �nding the winning applications for this new technology.
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Part I

Bene�ts of Dynamic Routing
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Chapter 2

Introduction to Dynamic Routing

2.1 Introduction

In telephone networks, not enough equipment is provided to enable every customer to

establish a simultaneous connection to every other network customer. Instead a statistical

approach is taken in the choice of equipment capacities in telephone networks. Tra�c

measurements are taken and enough equipment is provided in the trunk network to satisfy

the expected number of conversations in progress at the busiest hour of the day. Since the

network planners are conservative in the amount of equipment installed, it is the task of

routing algorithms to ensure that the networks are used e�ciently.

Static routing algorithms are used to calculate routing tables for the network switches.

These routing tables are not adjusted to account for tra�c conditions in the network.

Dynamic routing algorithms make adjustments to the call routing based on the state of

the network or based on the time of day.

2.2 Dynamic Routing

A simple example of a small network is given in Figure 2.1. This shows a three node

network, with nodes labeled A, B, and C. Each pair of nodes has a set of bi-directional

links between them, capable of 10 simultaneous conversations. If the tra�c requirements

are such that each node has �ve calls destined toward each other node, there are at least

two possible stable states for this network depending on the routing algorithms used.

One stable state would be the direct routing approach. In this case a call between A

and B would only be allowed to use the direct link from A to B. If this were the case, all

the o�ered calls could be accepted and the network would be capable of supporting the

30 simultaneous conversations.

Another alternative would be the two hop routing approach. In this case a call between

A and B would be allowed to use the direct link from A to B or alternatively to use a

two-hop route from A to C and then C to B. If this were the case, a stable state could arise

with all calls in the network taking two hops and only half the tra�c, i.e. 15 simultaneous

conversations, being accepted.
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From this example, it would seem that direct routing is always preferable. This is true

when the tra�c o�ered is symmetrical in nature. On the other hand, if a lot of tra�c is

o�ered between A and B with no tra�c originating from B or C, it can be seen that using

direct routing increases the probability of calls from A to B being blocked, since two-hop

call completion possibilities are eliminated.

From this simple example it can be seen that a static or dynamic routing algorithm

must strike a balance between increasing the global network e�ciency by carrying out

direct routing whenever possible, and increasing the network resilience to failure or unex-

pected tra�c patterns by o�ering as many routing possibilities as possible.

The �rst major implementation of dynamic routing in the North American tele-

phone network came with AT&T's implementation of Dynamic Non-hierarchical Rout-

ing (DNHR) which was introduced into the toll network in 1984, with projected network

savings of 15% [HSS87]. DNHR is a routing scheme that updates the routing tables de-

pending on time of day. In this way the di�erence in the busy hours in the di�erent time

zones across the USA can be taken advantage of. DNHR was subsequently replaced by

RTNR which is described in this chapter.

The remainder of this chapter includes descriptions of:

� RTNR or Real-Time Network Rerouting from AT&T

� DR5 or Dynamic Rerouting Based on 5-Minute Data from Bellcore

� DCR or Dynamically Controlled Rerouting from Prism Systems

� NOAA or Network Operations Analyzer and Assistant developed at Caltech

2.3 Description of RTNR

AT&T has implemented a Real-Time Network Rerouting System (RTNR) in its network.

The introduction of RTNR into the AT&T switched network was completed in July 1991

[ACF92], replacing the older DNHR system. The routing tables in the switches are up-

dated in real-time using the signaling network. See Figure 2.2. Thus, at call setup time,

the switch can send the call on the route that o�ers the best probability of completion.
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2.3.1 AT&T Network

The AT&T network consists of approximately 100 switches and associated transmission

equipment for the switching and transmission of calls. The network switches are dis-

tributed across the United States, which means that there should be potential savings

by taking advantage of the di�erent time zones in the di�erent states. Another goal of a

dynamic routing system is to provide a self-healing network that adjusts to take account

of any equipment that may have come into or gone out of service.

2.3.2 Signaling System No. 7

The signaling system is vital to the implementation of RTNR. Signaling System No. 7 is

an international standard and allows the transmission of call setup information between

switches as the customer dials the number. Rather than transmit the signaling information

along the same voice channels that the calls will use, a separate signaling network is used.

See Figure 2.2. The messages sent in this network are the subject of the international

standard. AT&T has extended the signaling message set to include information about

routing possibilities that can be used at call setup.

The routing scheme is a two-hop scheme, which means that a maximum of two hops

will be used to set up a call. The originating switch �rst tries a direct route to the

terminating switch. If the direct route is not available, the originating switch tries to �nd

a two-link path by �rst querying the terminating switch through the signaling network for

the busy-idle status of all trunks connected to the terminating switch. It then compares

its own trunk group busy-idle status information and �nds a list of two-hop possibilities

that are lightly loaded on both legs. One of these is chosen at random.

Two points should be noted. The �rst is that a 16 byte message is su�cient to

communicate the busy-idle status of all the trunks in the terminating exchange, assuming

the network has at most 128 nodes. If there are at most 128 nodes, then each node will

have routes to at most 127 other nodes. A single bit is used for each route busy-idle status.

Busy status means that over 90% of the trunks on the route are occupied. The shortness

of the message is a key requirement of this dynamic routing scheme, since millions of calls

are set up over the course of a day, and the signaling network should not be overloaded.

The second point to note is that a cache scheme is used to speed up the call setup.

When a request for trunk status is sent, instead of waiting for a response, a call setup
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is attempted using the most recently received status information. If this fails, the switch

will make another attempt when the new status information arrives. This speeds the call

setup.

2.3.3 Bene�ts of RTNR

As can be seen from this brief description, RTNR provides a routing scheme that dy-

namically adjusts itself to network conditions. In other words, if a free route exists for a

call, RTNR is very likely to �nd it. On the other hand, if certain routes are congested or

unavailable, RTNR is likely to avoid them. In addition it simpli�es the task of network

planners, since optimum routing tables for the switches in the network no longer need to be

calculated prior to adding new equipment, since the network will adjust itself accordingly.

AT&T network planners have used simulations to show that an RTNR network can

carry the same tra�c as a DNHR network, with 2-3% fewer facilities [AC93a]. Thus,

RTNR results in lower equipment costs. In addition, network planning and administration

have been simpli�ed.

Measurable improvements in service quality have also been found since the introduction

of RTNR. For example, the busiest day of the year is the Monday after Thanksgiving. In

1990, with DNHR 17,086 of 136 million calls were blocked on AT&T facilities. In 1991,

with RTNR 228 of 157 million calls were blocked on AT&T facilities. This represents a

substantial improvement. Some of this improvement could be attributed to changes in the

number of trunks in the network but AT&T in [ACF92] imply that the implementation

of RTNR was the main cause of the improvement. Other cases involving barely degraded

quality of service despite transmission facility failures are also cited.

2.4 Description of DR5

DR5 is a system proposed by Bellcore to implement a limited form of dynamic routing in

the local telephone network [CKP91, OK85, KO89, Kri89].

2.4.1 Regional Bell Telephone Networks

The main constraint in the local telephone network compared to the long distance net-

work is that switches are supplied by more than one vendor in a given network. Thus,

implementation of dynamic routing is more di�cult, since cooperation between di�erent
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vendors to update routing tables in the switches is required. This is still an unsolved

problem.

Instead DR5 takes the approach of using the existing infrastructure for network man-

agement and adapting it to provide a limited form of dynamic routing. Existing network

management capability in the local telephone network allows network managers to obtain

data about every trunk group in the network at 5 minute intervals. If network managers

�nd a problem in the network, they can e�ect expansive or restrictive controls to reroute

tra�c or cut down on tra�c entering the network. DR5 uses the same interface to network

management systems as the network operators, computes reroutes based on trunk data,

and implements these reroutes using network management controls. Using simulations,

Bellcore has estimated this approach can provide 50% of the potential bene�ts of full

dynamic routing [CKP91].

2.4.2 Limitations of DR5

DR5 has limitations because the network management system was not originally designed

for supporting DR5. First, some routing issues need careful handling when implementing

controls. Number translation is the step during call setup of translating the telephone

number that is dialed by the customer to �nd a trunk route on which the call can be

sent. Number translation issues may mean that two controls must be put in to e�ect a

single reroute. The �rst control is a precautionary control that prevents routing loops.

Occasionally reroutes may not be allowed due to reroutes already in place that could result

in routing loops.

Second, the update time of 5 minutes means that not all of the gains of dynamic

routing are realized compared to the DCR and RTNR systems.

2.5 Description of DCR

DCR or Dynamically Controlled Routing is a dynamic routing system that works well with

Northern Telecom DMS switches. It is currently installed in the Canadian network. Like

RTNR, it updates the routing tables in the switches at short time intervals to take account

of the current state of the network. Unlike RTNR, there is a central network management

location that carries out all of the computations with respect to the new routing tables for

the switches. More recently DCR has been enhanced to provide the capability to prevent
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tra�c associated with a high volume call-in from impacting the network.

2.5.1 Expansive Controls

The heart of the DCR network is a central network processor. Each switch reports to the

network processor every 10 seconds with respect to its trunking status, over
ow tra�c

and CPU occupancy [Car89]. Using this information, the network processor updates the

routing tables of the switches within 5 seconds. This cycle repeats every 15 seconds.

A call in the DCR network uses at most two hops. Some facility failures in the

Canadian network were handled well by DCR. For example when a transmission link was

lost on June 16, 1989 between 18:00 and 22:00, DCR enabled all calls to be completed

without over
ow. Other outage examples were also given.

2.5.2 Restrictive Controls

More recently DCR has been extended to handle restrictive controls in the event of high

volume call-in conditions, where call-in tra�c has a low probability of completing and

should be cut o� at source to prevent interference with regular tra�c [LR91].

The DCR approach, which is also used by network managers, is one of call gapping.

A call gap speci�es that only a certain number of calls are to be let through to a given

telephone number or range of numbers in a control interval. In the case of DCR, the

control interval is of the order of 15 seconds. The number of calls to be let through is

a function of the arrival rate, the holding time, and the number of lines serving the call

destination. In addition, the switch processor occupancy of all the switches in the network

provides feedback as to when further throttling is required. Removal of the implemented

controls is only made when certain low thresholds are passed to provide hysteresis in the

control process.

Simulations have shown the system to work well in a large network even in the event

of update data not always being available, or holding time estimates being inaccurate. In

each case, the system is able to update the call gaps to keep switch processors below 85%

occupancy, as opposed to 100% occupancy when the algorithm is not implemented. The

customer still receives all the calls that they can handle. On the other hand, alternative

call gap algorithms have been shown to oscillate when update information is not available

[LR91].
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2.6 Description of NOAA Dynamic Routing Possibilities

NOAA is described in detail in Appendix A.

Presently NOAA monitors the network for calls that are over
owing from trunk groups.

To move more towards dynamic routing, NOAA could monitor trunk groups for occupancy

above 90% and put in expansive controls before the trunk groups over
ow. The main

reason this is not presently done is that there is a bottleneck in obtaining information

from the Paci�c Bell network management system, which means that NOAA is limited in

the number of controls that it can implement and monitor in a 5 minute period.

In Chapter 3 the equipment savings that can be expected from implementing dynamic

routing using a system such as NOAA are examined.

2.7 Comparison

In this section some comparisons are drawn between the various dynamic routing systems.

2.7.1 Local Versus Global Knowledge

RTNR is the main dynamic routing system which avoids the use of centralized knowledge

to update the routing tables in the switches. This has the advantage of providing a quick

response to any exception situations. Also the cost of providing a data path from all the

switches to a central location for the transmission of occupancy and routing information

is avoided. On the other hand it becomes more di�cult to use a system such as this for

network management purposes, especially for restrictive controls, since a global view is

lacking.

NOAA, DCR and DR5 all carry out processing of controls or routing table updates at

a central network management location.

2.7.2 Update Times

DR5 and NOAA use a 5 minute update cycle for controls and network data. The RTNR

and DCR schemes have update cycles of seconds. In general, the faster the response, the

more tra�c can be saved in the event of exceptional situations arising in the network.

However, the faster the response, the more data processing capability needs to be present

in the network management center.
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2.8 Analysis of Dynamic Routing

Most dynamic routing schemes are analyzed using simulation techniques to �nd the equip-

ment savings associated with implementing the scheme.

Ash et al. in [ACF92] have shown using simulations that RTNR provides capital equip-

ment savings over DNHR. Ash et al. in [AC93a, AC93b] have showed that network design

and network capacity management in RTNR networks amounts to a linear programming

problem for which known methods with certain heuristic adjustments perform well.

Mitra et al. in [MGH93] carry out an analysis of a generalized RTNR scheme which

sends more than one bit to indicate whether a route is busy or not. A simpli�ed model of

a symmetric network in which an assumption was made that each link was independent of

other links was used. This model is called a Fixed Point Model. Fixed Point Models are

discussed in detail in Chapter 4. Trunk reservation in which a small number of trunks was

reserved for direct routed tra�c was part of the model. Trunk reservation is discussed in

detail in Chapter 8. Simulations were carried out to verify the independence assumption

for the Fixed Point Model. The results indicate that using two bits (four states) to signify

the trunk state is close to optimal.

Chaudhary et al. in [CKP91] used simulations to show that DR5 shows improvements

over static rerouting schemes. Koussoulas in [Kou93] presents a model which is the core of

the analysis routine used in DR5. It assigns a cost to each routing decision based on the

possible loss of tra�c due to the ine�ciency of two hops over a direct route. Simulations

were used to verify an analytical model of a symmetric network. Again independence of

link tra�c was assumed. The results indicate that the cost scheme proposed produced

close to minimum network blocking.

Langlois et al. in [LR91] have carried out simulations to show that the proposed

restrictive controls in DCR work well.
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Chapter 3

Simulation of Dynamic Routing

3.1 Introduction

In Chapter 2 the various options available for dynamic routing are described. In this

chapter, simulations are carried out to evaluate the bene�ts of dynamic routing based on

5 minute network management data.

3.2 Simulation Setup

The simulations yield estimates of the equipment savings that may be obtained by pro-

viding extra routing choices to switches in the network using a system such as NOAA.

The simulations are of symmetric networks.

Two routing schemes are considered:

� With hierarchical routing, each call is �rst tried on the direct route and then on a

�xed alternate route.

� With NOAA type routing, each call is �rst tried on the direct route, then on a �xed

alternate route, and then on a NOAA suggested route. The list of NOAA suggested

routes is revised once every �ve minutes. The list of NOAA suggested routes is

obtained by attempting to route tra�c from the most heavily loaded direct routes

to the most lightly loaded alternate routes. The algorithm is given in more detail in

Section 3.4.2. The update time of �ve minutes is used because the present NOAA

application receives new data concerning trunk group occupancy every �ve minutes.

The analysis generalizes to arbitrary update times.

3.3 Calculation of Equipment Savings

For each data point on the following plots, three simulations are performed. The �rst

simulation is of hierarchical routing. The next simulation is of hierarchical routing with

one more trunk on each trunk group. This gives a �gure for the increase in tra�c carrying

capacity caused by an increase in equipment. The �nal simulation is of NOAA type
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rerouting. The increase in tra�c carrying capacity when NOAA rerouting is used is then

converted to an equivalent change in trunk equipment requirements in the network.

In symbols, let �1 be the maximum tra�c that a hierarchical routing network can

accept given C trunks on each trunk group, and 1% blocking, �2 the maximum tra�c

given C + 1 trunks on each trunk group and 1% blocking, and �3 the maximum tra�c

given C trunks on each trunk group with NOAA rerouting and 1% blocking, then the

equipment savings S that would result from implementing NOAA rerouting are given by:

S =
1

C

�
�3 � �1

�2 � �1

�
(3.1)

3.4 Routing Arrangements

In more detail, the routing arrangements are as follows. The network is a symmetric

network (see Figure 8.1 for an example of a 5 node symmetric network) with N nodes and

C uni-directional trunks between each pair of nodes. Both N and C are varied during the

simulations.

3.4.1 Hierarchical Routing

For the hierarchical routing arrangement, a call from a node i to a node j is �rst attempted

on the direct route from i to j. See Figure 3.1. If the call is blocked on the direct route,

because all C trunks are occupied, it is then attempted on a �xed alternate route. The

�xed alternate is chosen to be via an intermediate node, k, and requires a free trunk to

be found between i and k and also k and j.

The value of k is chosen to equal (i + 1)jN where j denotes the modulus operator,

unless (i+ 1)jN happens to equal the destination node j, in which case the intermediate

node is set to (i+ 2)jN .

Random call arrivals at an average rate of � calls per second are considered, where � is

varied during the simulation. Memoryless holding times (See Section 1.3.3) are considered,

with an average holding time of 180 seconds.

3.4.2 NOAA Rerouting

For the NOAA rerouting, the call is �rst tried on the direct route and the �xed alternate

route, and �nally on a NOAA suggested alternate route. At �ve minutes intervals the
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Direct Route

Fixed Alternate Route

Possible NOAA 
Alternate Route

Node i Node j

Figure 3.1: Direct and Alternate Routes in Symmetric Network Model

NOAA suggested alternate routes are revised. For each direct route, a search is made

through the (N�3) possible alternate routes, not including the �xed alternate route. The

capacity of each of these alternates is noted. The alternate route with the most capacity is

chosen as a NOAA reroute, provided it has more spare capacity than the �xed alternate.

In the event of a tie between a number of equally good alternates, the tie is broken at

random.

If there are i trunks occupied on leg number 1 of the alternate route and j trunks

occupied on leg number 2 of the alternate route, then the capacity of that alternate is

taken to be C - Max(i, j), corresponding to the minimum capacity on each of the two legs.

3.5 Results

The simulation results are shown in Figures 3.2 to 3.4. For comparison, the NOAA

algorithm is rerun using 15 second updates of the routing table instead of 5 minute updates.

This is done to �nd the limits as call by call update of the routing tables is approached.

The results indicate that carrying out 15 second updates gives approximately double the

equipment savings in all scenarios compared to carrying out 5 minute updates.

It could be asked whether 15 second updates is close to call by call update of the

routing tables. Assuming 10 trunks between nodes, this would allow about 5 Erlangs to

be carried with a small amount of blocking (see Table 1.1). This gives an arrival rate of

� = �a = 5:0=180 calls per second (see Equation 1.3). This is 36.0 seconds between new

call arrivals on average. Thus the 15 second update of routing tables should be pretty
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close to call by call update of the routing tables.

Figure 3.2 shows that for a 10 node fully interconnected network, the equipment savings

for NOAA rerouting with 5 minute updates vary from about 5.8% to 2.3% as the number

of trunks between nodes increases. In qualitative terms, this can be understood by noting

that large trunk groups are more e�cient, in terms of the amount of tra�c that can be

carried, than smaller trunk groups for a given level of blocking. This can also be seen by

inspection of Table 1.1. Thus there is less spare capacity in the network that the NOAA

rerouting algorithm can make use of.

Figure 3.3 shows that for a symmetric fully interconnected network with 10 trunks

between each node, the equipment savings for NOAA rerouting with 5 minutes updates

varies from about 5% to 6.8% as the number of nodes increases. In qualitative terms, this

can be understood by noting that the more nodes in the network, the better the choice

that the NOAA rerouting algorithm has in seeking a lightly loaded trunk group.

Although the �rst point in each of Figures 3.3 and 3.2 should agree, they di�er due

to the size of the interpolation step used to �nd the tra�c for a given level of blocking.

Figure 3.2 uses a smaller interpolation step and should be more accurate.

Figure 3.4 shows that for a symmetric network with 30 nodes and 10 trunks on each

trunk group, the equipment savings for NOAA rerouting with 5 minute updates varies

from about 2% to 6.8% as the connectivity increases from 23% to 100%. Connectivity

measures the number of connections between network nodes compared to the total number

of possible connections. In a 30 node network, the total number of possible connections

would be 30 � 29 = 870.

This indicates that in a real network, the equipment savings would be less than the

results suggested by simulations of fully interconnected symmetric networks. For example,

the connectivity in a real network may be close to 20%. The connectivity of metropolitan

networks would be higher, perhaps as large as 50%.
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Chapter 4

Fixed Point Models for Dynamic Routing

4.1 Introduction

A Fixed Point Model (FPM) uses a knowledge of arrival rates and departure rates and

routing rules to calculate the state probabilities corresponding to a given routing model.

See Section 1.3.6 in Chapter 1 for what is meant by a set of state probabilities. An initial

set of state probabilities is assumed. Iteration using the arrival rates and departure rates

is carried out until there is little change in the state probabilities.

4.2 Simple Example

FPMs are usually used to model networks, but here a single trunk group is modeled for

illustrative purposes.

Assume a trunk group with one trunk, whose state transition diagram is illustrated in

Figure 4.1. This will have two states, busy or empty. Assuming the arrival rate is � = 2:0

to both states and the departure rate is � = 1:0 from state 1. Calls arriving when the

system is in state 1 (i.e. one trunk occupied) are blocked.

De�ne pi(n) as the probability of i trunks being occupied at time n�t. Assume the

initial probabilities for the FPM are p0(0) = 0:5 and p1(0) = 0:5. These initial probabilities

can be arbitrarily chosen as long as they sum to 1. Take �t = 0.01 time units. Then iterate

for each time n using:

p0(n) = p0(n� 1)� �p0(n� 1)�t+ �p1(n� 1)�t (4.1)

p1(n) = p1(n� 1) + �p0(n� 1)�t� �p1(n� 1)�t (4.2)

Within 400 iterations, this converges to

p0 = 0:333334 (4.3)

p1 = 0:666666 (4.4)

which compares well with the true answer for the equilibrium probability distribution of

1=3 and 2=3 respectively, obtained from equation 1.9. The blocking probability is equal

to the probability that the trunk group is busy when a new call arrives, namely p1.
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Figure 4.1: Simple State Transition Diagram

When an FPM is used to model a symmetric network, usually a single trunk group

is modeled and it is assumed that this trunk group can represent any trunk group in the

network [MGH93].

4.3 Bene�ts and Costs of the FPM Approach

For symmetric networks, it was observed that the FPM is faster than simulation. The

FPM does involve some iteration but the run times were a lot less than the run times of

simulations to get the same estimates.

Despite the fact that an FPM models a stochastic system, an FPM does not make

use of a random number generator. Each run of an FPM model will give the same result,

assuming su�cient iterations. Given su�cient iterations, the choice of the initial state

probabilities have an exponentially small e�ect on the �nal outcome. Since an FPM

model may make some approximations, it is di�cult to know how much con�dence to

associate with the FPM result. The best way to characterize the accuracy of an FPM is

to compare with simulation. The simulation can be designed to avoid the assumptions

implicit in an FPM.

The main assumption for FPMs is independence of trunk groups. In other words the

state of each trunk group is assumed to be independent of the state of the other trunk

groups. This assumption implies that a call that uses two trunk groups in order to connect

to its destination is modeled as two calls, each using one of the trunk groups. Clearly this

is inaccurate.

The network blocking is a function of the blocking on the direct route and the blocking

on the alternate route(s). The independence assumption implies that the blocking on the

direct route is independent of the blocking on the alternate route. The results of this

chapter will show that this condition is not met at low tra�c levels.
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4.4 State of the Art

Fixed Point Models have been used in recent years to analyze di�erent routing algorithms

in symmetric networks. In [MS91], D. Mitra et al. use �xed point models to evaluate two

routing methods for telephone networks called Dynamic Alternate Routing (DAR) and

Fixed Alternate Routing (FAR). The Fixed Alternate Routing used a �xed pre-computed

routing table whereas the DAR algorithm varied its routing based on whether blocking

was encountered or not. The study concluded that DAR was a feasible method of routing

that did better than FAR following network failures.

In [MGH93], D. Mitra et al. use �xed point models to evaluate variants of AT&T's

RTNR routing algorithm. The study concludes that it is possible to improve on RTNR by

transmitting slightly more state information between nodes. This paper gives references

to 8 other papers on the subject of Fixed Point Models for telephone network routing

evaluation over the past twenty years.

In [ACL94], G. R. Ash et al. describe how �xed point models are use in the dimen-

sioning of the AT&T network, to calculate the trunk group sizes given a set of tra�c

demands, desired blocking probabilities and the RTNR routing rules. The planning algo-

rithm is called Fully Shared Network (FSN) design.

4.5 Starting Point

The starting point for the analysis of FPMs in this chapter is a paper by Akinpelu [Aki84]

on overload performance of non-hierarchical routing networks. The purpose of the Akin-

pelu paper is to show that networks which use DNHR can have two stable states under

overload conditions. In an appendix to the paper, an FPM is given for networks with a

�xed but arbitrary number of choices for alternate routes.

4.5.1 FPM of Akinpelu

It is assumed that:

1. The mixture of tra�c o�ered to a trunk group has random arrivals.

2. Trunk group blocking probabilities are independent.
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The term path is de�ned to be a set of distinct trunk groups that forms a connec-

tion between two nodes. The term route is de�ned to be an ordered collection of paths

connecting the same point-to-point pair.

Let Lj be the expected o�ered load for point-to-point pair j. Let L =
P

j L
j be the

total o�ered load. Let pi, ni, and ai denote the blocking probability, trunk group size, and

o�ered load for trunk group i. Let qi = 1� pi. A path is denoted by r, a route by R, the

route for point-to-point pair j by Rj and the route formed by the �rst k paths of Rj by

R
j
k = (r

j
1; : : : ; r

j
k) (4.5)

Finally D(R) is the probability that route R is blocked.

De�ne c
j
k as the expected carried load for path k for point-to-point pair j. Then

c
j
k = Lj[D(R

j
k�1)�D(R

j
k)] (4.6)

De�ne Ki as the expected total carried load for trunk group i. Then

Ki =
X

j;k;i2r
j

k

c
j
k (4.7)

Also

Ki = aiqi (4.8)

from which ai can be found. To �nd pi use:

pi = B(ni; ai) (4.9)

where B(n; a) is the Erlang B blocking formula which gives the probability of blocking

assuming n trunks available, tra�c of a, and memoryless arrivals. De�ne z as the expected

network blocking. Then

z =

P
j L

jD(Rj)

L
(4.10)

De�ne C as the expected network carried load. Then

C = L(1� z) (4.11)

For iteration purposes, the blocking needs to be recalculated. Using the independence

assumptions gives:

D(R) =
kY
t=1

0
@1� Y

i2rt

qi

1
A (4.12)

assuming the paths of R are disjoint.
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4.6 Simple FPM for Hierarchical Routing

The �rst FPM derived in this chapter is a simple FPM for Hierarchical Routing. The aim

is to compare the blocking for an FPM that models NOAA rerouting with the blocking

for an FPM that models hierarchical rerouting. The FPM for NOAA rerouting will be

given later in Section 4.8.

The routing scheme is meant to model the hierarchical routing typically present in a

regional Bell telephone network. The network is symmetric. A call is o�ered �rst to a

direct route. If this routing attempt fails the call is o�ered to a �xed alternate route. The

alternate route is a two hop route.

4.6.1 FPM

For the �xed point model, de�ne N as the number of nodes, C as the number of trunks

on each route, �t as the timestep of the iteration, p(i) as the probability of i trunks being

occupied on a route, pb as the blocking probability for a call o�ered to a route, � as the

arrival rate of calls, and � as the service rate of calls. Without loss of generality, � is

taken to be 1. In other words, the time unit is taken to be the average holding time of a

call. Initially the occupancy probabilities p(i) can be arbitrary provided they sum to 1.

The probability of a call being blocked on a route is simply the probability of C trunks

being occupied on a route.

pb = p(i = C) (4.13)

De�ne �T as the total arrival rate of calls on a route. Then

�T = �+ 2�pb(1� pb) (4.14)

since the route carries direct routed tra�c and over
ow tra�c. The direct routed tra�c

has an arrival rate �. The over
ow tra�c has an arrival rate �pb provided the other leg of

the alternate route is not blocked. Each direct route carries the over
ow tra�c from two

alternate routes.

The state probabilities can be updated as follows:

�p(i) = (�T p(i� 1)� �T p(i)� ip(i) + (i+ 1)p(i+ 1))�t 0 < i < C (4.15)

�p(i) = (��T p(i) + (i+ 1)p(i+ 1))�t i = 0 (4.16)
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Figure 4.2: Blocking for FPM and Simulation

�p(i) = (�T p(i� 1)� ip(i))�t i = C (4.17)

The network blocking z can be calculated as

z = pb(1� (1� pb)
2) (4.18)

corresponding to a call being blocked on both the direct route and on either leg of the

alternate route.

A comparison of the FPM results and simulation results for the simple FPM for hi-

erarchical routing is given in Figure 4.2. The simulation is a simulation of 5 hours of

telephone tra�c on a network with 10 nodes and 10 circuits between each node. Each call

arrival and departure was simulated. 10 runs of the simulation were carried out to derive

error bars for the estimates.

The lack of agreement for low tra�c levels could be due to the assumption that blocking

on the alternate route is independent of blocking on the direct route. This clearly is not

true for low tra�c levels. The more complex FPM in the next section will model this

dependency.
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4.6.2 Simulation using Latin Squares

When the simulation work for comparison with an FPM started, if a call was to be routed

between nodes i and j, then node (i+ 1)jN was chosen as the intermediate node for the

alternate route, unless (i + 1)jN was equal to j, in which case the intermediate node

was taken to be (i + 2)jN . It was thought that since no node was treated specially, the

agreement with the FPM model, which assumes symmetry, should be good.

However, as the modeling progressed, it became clear that routes of the form (i; (i+

1)jN) were more heavily loaded than the other routes as a consequence of this routing

scheme. What was needed to restore symmetry was a Latin Square format for the routing

table in the switches. The Latin Square is used to choose the via node for alternate

routing from source to destination. A Latin Square is a table of integers in which the

same integer appears only once in each row and column. Since each number appears only

once, it can be used as a choice for the via node with the row representing the source and

the column representing the destination. This arrangement will spread the tra�c evenly

over the network. See Figure 4.3.

The special property of this Latin Square is that the elements along the diagonal are

equal to the row number. This constraint ensures that the chosen via node will never be

equal to the source or the destination node. To construct the Latin Square, a perturbation

method was used. The initial square was set to be

aij = (i� j)jC 0 � i; j � C � 1; i� j even (4.19)

aij = (i+ j)jC 0 � i; j � C � 1; i� j odd (4.20)

which is a Latin Square without the special property that is required for the routing table

in the switch, namely that the elements on the diagonal be equal to the row number. Then

3 types of random perturbation were carried out:

� row swaps

� column swaps

� element swaps

The element swap started by swapping two elements in some row. This violated the

column constraint for the second element, requiring another element swap. This again
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Figure 4.3: 10x10 Latin Square. Used to choose the Via Node for Alternate Routing

from Source to Destination. Each entry appears once in each row and column assuring

symmetry.

violated constraints requiring another swap. This set of swaps terminates when the column

constraints for the �rst element in the original row was �xed. In switching theory, it is

similar to the algorithm used to set up the crossbar elements in a rearrangeable switch.

Without this element swap perturbation, no solution was found.

The stopping criterion was when all the diagonal elements were di�erent from each

other. Once such a square was found, a simple re-labeling could generate the type of

square in Figure 4.3. The search time was not very long, under 30 seconds on a Sparc

10. It should be noted that the number of Latin Squares in the search space was over

(n!)2n=nn
2
� 1030 for n = 10 [vLW92], so this type of search would have failed if there

was a unique solution.
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4.7 Improved FPM for Hierarchical Routing

It was noted in Section 4.6 that a reason for poor agreement between the FPM of a 10

node network and the simulation could be the violation of the independence assumption

that blocking on the direct route is independent of blocking on the alternates. In this

section, an improved FPM is described that models three routes, a typical direct route

and the two legs of its alternate route.

For the �xed point model, de�ne N as the number of nodes, C as the number of

trunks on each route, �t as the timestep of the iteration, p(i; j; k) as the probability of i

trunks being occupied on a direct route, j being occupied on leg 1 of its alternate route,

and k being occupied on leg 2 of its alternate route, pb as the blocking probability for

a call o�ered to a route, � as the arrival rate of calls and � as the service rate of calls.

Without loss of generality � is taken to be 1. In other words, the time unit is taken to be

the average holding time of a call. Initially the occupancy probabilities p(i; j; k) can be

arbitrary provided they sum to 1.

The state probabilities can be updated as follows:

�p(i; j; k) = (c1 + c2 + c3 + c4 + c5)�t (4.21)

where c1; : : : ; c5 are contributory terms due to call arrival and departure events.

Considering departures gives

c1 = (i+1)p(i+1; j; k)+(j+1)p(i; j+1; k)+(k+1)p(i; j; k+1)�ip(i; j; k)�jp(i; j; k)�kp(i; j; k)

(4.22)

where p(i; j; k) = 0 for i, j or k < 0 and p(i; j; k) = 0 for i, j or k > C.

Considering external arrivals gives:

c2 = ��p(i; j; k)��p(i; j; k)��p(i; j; k)+�p(i�1; j; k)+�p(i; j�1; k)+�p(i; j; k�1) (4.23)

Considering internal arrivals causing a transition from state (i; j; k) gives:

c3 = �c3:1 � c3:2 � c3:3 � c3:4 (4.24)

where

c3:1 = 2�i(i)p(i; j; k) i < C (4.25)

c3:2 = �i(j)p(i; j; k) j < C (4.26)
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c3:3 = �i(k)p(i; j; k) k < C (4.27)

c3:4 = �p(i; j; k) i = C; j < C; k < C (4.28)

where �i(j), the internal over
ow tra�c to j, is the rate of arrivals to leg 1 of the alternate

route from the direct route assuming j trunks presently occupied on leg 1 of the alternate

route. This is calculated as:

�i(j) = �

PC�1
k=0 p(C; j; k)PC

i=0

PC
k=0 p(i; j; k)

(4.29)

The numerator represents the probability of being in a state amenable to a call arrival.

The denominator represents the probability of j trunks being occupied on leg 1 of the

alternate route.

Considering internal arrivals causing a transition into state (i; j; k) gives:

c4 = c4:1 + c4:2 + c4:3 + c4:4 (4.30)

where

c4:1 = 2�i(i� 1)p(i� 1; j; k) i > 0 (4.31)

c4:2 = �i(j � 1)p(i; j � 1; k) j > 0 (4.32)

c4:3 = �i(k � 1)p(i; j; k � 1) k > 0 (4.33)

c4:4 = 2�i(i)p(i; j � 1; k � 1) i = C; j > 0; k > 0 (4.34)

Note that in this model, a simultaneous transition to state (i; j; k) is seen from state

(i; j � 1; k � 1) once a call is re-attempted on an alternate route, following its failure on

the direct route.

Finally some departures leave j and k simultaneously:

c5 = c5:1 � c5:2 (4.35)

c5:1 = 0:5(j + 1 + k + 1)p(i; j + 1; k + 1)f j < C; k < C (4.36)

c5:2 = �0:5(j + k)p(i; j; k)f (4.37)

where f is an estimate of the fraction of calls that were rerouted from direct route i instead

of other direct routes. An approximate value for f based on the o�ered tra�c is computed

to be:

f =
�i

2�i + �
(4.38)
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Figure 4.4: Blocking for Improved FPM and Simulation

Here

�i = �pb(1:0� pb) (4.39)

pb =
CX
j=0

CX
k=0

p(C; j; k) (4.40)

which is the same set of formulas as used in the simple FPM model of hierarchical routing

to yield the o�ered tra�c from the direct route.

The network blocking z can be calculated as

z =
CX
j=0

p(C; j; C) +
CX
k=0

p(C;C; k)� p(C;C;C) (4.41)

corresponding to a call being blocked on both the direct route and on one leg of the

alternate route.

A comparison of the FPM results and simulation results for the simple FPM for hi-

erarchical routing is given in Figure 4.4. The simulation is a simulation of 5 hours of

telephone tra�c on a network with 10 nodes and 10 circuits between each node. Each call

arrival and departure was simulated. 10 runs of the simulation were carried out to derive

error bars for the estimates. The agreement with the simulation is much improved at low

tra�c levels.
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4.8 FPM for NOAA

With NOAA rerouting, a call will �rst try the direct route, then a �xed alternate route

and �nally a NOAA-suggested alternate route. The table of NOAA suggested alternate

routes is revised every 5 minutes. The NOAA suggested alternate route is the alternate

route with the most available capacity. If there is a tie for the route with most available

capacity, then one of the routes is chosen at random. If none of the potential alternates

gives more available capacity than the �xed alternate route, no NOAA reroute is chosen.

Let p(i) be the probability of i trunks being occupied in a typical route in a symmetric

network. A matrix A = aij is de�ned, where aij is the probability of a route appearing i

times as a NOAA alternate choice given j trunks occupied on the route at the start of the

�ve minute period. A matrix B = bjk is de�ned, where bjk is the probability of j trunks

being occupied at the start of the 5 minute period given k trunks occupied now.

The initial values for p(i) can be chosen arbitrarily provided the values sum to one.

The B matrix is initially set to be the identity matrix.

4.8.1 NOAA Via Routes

Based solely on the p(i) values, the A matrix can be calculated as follows. Recall that the

A matrix gives the probability of a route being part of i NOAA alternates, given that j

trunks are occupied at the start of the 5 minute period.

An intermediate value pc is de�ned to be the probability of a route being chosen once

as a NOAA alternate, given i0 trunks occupied.
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The 2(N � 3) possible cases for which the route could be chosen as an alternate are

illustrated in Figure 4.5. This shows N � 1 routes from any given node. When the choice

of a NOAA alternate is made, two of these routes are ruled out because they represent

the direct route and the �rst alternate. The remaining routes may be chosen as NOAA

alternates and carry extra tra�c as a result.

4.8.2 Binomial Distribution

The 2(N � 3) possible cases for which the route could be chosen as part of a NOAA

alternate are taken to be independent Bernoulli trials. Then

aij =

 
2(N � 3)

i

!
pic(1� pc)

2(N�3)�i (4.42)

It remains to calculate pc, the probability of a route being chosen as one NOAA

alternate, given i0 trunks occupied at the start of the 5 minute period.

4.8.3 Multinomial Distribution

Consider the situation where there are i0 trunks occupied on leg 1 of a potential NOAA

alternate and l trunks occupied on leg 2 of a potential NOAA alternate. The overall

capacity on that route is denoted as:

M(i0; l) = C �Max(i0; l) (4.43)

Consider the further condition that there are j and k trunks occupied on the two legs of

the �xed alternate route, and that M(j; k) > M(i0; l).

Looking at the other N �4 possible alternates, the probability that a given alternative

has more capacity than M(i0; l) is denoted as pM , equal capacity as pE , and less capacity

as pL. In this situation, assuming route independence, there is a multinomial distribution:

(pM + pE + pL)
N�4 (4.44)

These probabilities are given by:

pM =
X
l0

X
m0

p(l0)p(m0) M(l0;m0) > M(i0; l) (4.45)

pE =
X
l0

X
m0

p(l0)p(m0) M(l0;m0) =M(i0; l) (4.46)



40

pL =
X
l0

X
m0

p(l0)p(m0) M(l0;m0) < M(i0; l) (4.47)

The probabilities of cases where there are a paths with equal capacity, N � 4 � a

paths with less capacity, and 0 paths with more capacity can be summed. This gives the

following formula:

p0(i0; j; k; l; a) =

 
N � 4

a

!
paEp

N�4�a
L (4.48)

using the formula for the multinomial distribution [Fel50].

A route is chosen as a NOAA alternate if it is a clear winner in the set of choices for

a NOAA alternate, or with a probability 1=a if there are a equally capable winners. This

gives:

pc =
CX
j=0

CX
k=0

CX
l=0

N�4X
a=0

p(j)p(k)p(l)
1

a+ 1
p0(i0; j; k; l; a) M(i0; l) > M(j; k) (4.49)

4.8.4 Update Equations

The change in state probabilities is calculated as:

�p(i)

�t
= �0(i� 1)p(i� 1)� �0(i)p(i)� i+ (i+ 1)p(i+ 1) (4.50)

where �0(i) is the change due to call arrivals when i trunks are occupied on the route, and

i is the change due to calls departing.

Considering call arrivals gives

�0(i) = �+ �2pb(1� pb) + �n(i) (4.51)

where pb is the probability of a call experiencing blocking on the direct route and �n(i) is

the rate of arrival of tra�c due to NOAA reroutes.

The NOAA tra�c depends on i, the number of trunks occupied on the route now, and

j, the number of trunks that may have been occupied at the start of the 5 minute period.

Use is made of the A and B matrices. The A matrix contains elements aij , the probability

of a route appearing i times as a NOAA alternate choice given j trunks occupied on the

route at the start of the �ve minute period. The B matrix contains elements bjk, the

probability of j trunks being occupied at the start of the 5 minute period given k trunks

occupied now. The NOAA tra�c is given by:

�n(i) =
CX
j=0

2(N�3)X
a=0

�pbpa(1� c)(1� pb)aaajbji (4.52)
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where c is the probability of no NOAA reroute found, and pa, the probability of being

blocked on the alternate route, is given by

pa = 1� (1� pb)
2 (4.53)

This iteration of the state probability update equations updates the pi probability vector

and the loop can begin again. Iteration terminates when the change in probability is

su�ciently small.

4.8.5 Calculating the Probability of No NOAA Reroute Found

A NOAA reroute is only chosen if it does better than the existing �xed alternate route.

Let c be the probability that no NOAA reroute is found. In other words, the route chosen

by NOAA is the same as the �xed alternate route. Suppose the �xed alternate route has

j trunks occupied on leg 1 and k trunks occupied on leg 2. Then the probability that no

NOAA reroute is found is:

c =
CX
j=0

CX
k=0

p(j)p(k)

 
(1�

M�1X
l=0

M�1X
m=0

plpm)
N�3

!
(4.54)

where M = max(j, k). This accumulates the probability of �nding a NOAA reroute and

subtracts it from 1 to �nd the probability of no NOAA reroute.

4.8.6 Calculating the Network Blocking

The network blocking is de�ned to be:

z = pbpa(c+ (1� c)pa) (4.55)

where pb = p(C), the probability of C trunks being occupied on a route, pa is the proba-

bility of the alternate route being blocked (see Equation 4.53), and the �nal term is the

probability of the NOAA reroute not existing or else existing and being blocked.

4.8.7 Updating the B Matrix

The B matrix needs to be updated at each timestep. A backwards Markov approach

using the state transition probabilities is needed to calculate the change in probabilities.

In matrix form, this is:

B(n+ 1) = B(n)S (4.56)
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B(0) = I (4.57)

where S is the Markov matrix for transition between states if time were reversed. Recall

that the B matrix contains elements bjk, the probability of j trunks being occupied at

the start of the 5 minute period given k trunks occupied now. The S matrix contains

elements skl, the probability of k trunks being occupied at a previous timestep given l

trunks occupied now.

The following equation is given in [Fel50] for a reversed Markov chain:

qij =
ujpji

ui
(4.58)

for the probability that the system was in state j at the previous time step, given that the

system is in state i now. Here ui and uj are probabilities from the invariant probability

distribution (equilibrium distribution) and pji is the probability of a transition to state i

from state j. Using this formula, and a small timestep, it is found that the Markov matrix

for a transition between states if time were reversed is the same as the Markov matrix

for a transition between states with time going forward. This makes calculation of the S

matrix above straightforward.

Using a state transition diagram gives:

sij =

8>>><
>>>:

1� �0�t� i�t i = j

�0�t i = j + 1

(i+ 1)�t i = j � 1

0 otherwise

(4.59)

Here �0 denotes the total rate of call arrivals, which was used to update the p(i) vector

of probabilities.

4.8.8 Results

Figure 4.6 shows a comparison of the FPMmodel with simulation. The route independence

assumption seems to result in an underestimate of the blocking for low tra�c levels but

otherwise good agreement is seen for high tra�c levels. The same phenomenon was seen

in the simple model of hierarchical routing in Section 4.6.

4.9 Conclusions

It seems from our observations that an FPM can give a faster answer about network

blocking for symmetric networks than simulations, although that answer may not be as
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Figure 4.6: Blocking for NOAA FPM and Simulation

accurate as a simulation.

It has been shown that FPMs for symmetric networks are least accurate when tra�c

levels are low and the network is on the threshold of blocking. The cause of the loss of

accuracy seems to be the assumption that blocking on the di�erent paths of a route is

independent. For the networks examined in this chapter, it seems to be the case that block-

ing on the direct route biases the occupancy on the alternate routes to be higher, which

means that direct multiplication of the blocking probabilities results in an underestimate

of blocking on that route.

For networks with a larger number of alternates used for rerouting, such as AT&T's

RTNR rerouting, the increased tra�c mix that results from a greater choice of alternates

could restore the independence assumption, increasing the accuracy of the FPM. Such

networks were not considered in this chapter.

An original FPM for NOAA-style rerouting was derived in this chapter. This was done

mainly to verify the accuracy of the results obtained by simulation, since a simulator for

NOAA-style rerouting had already been developed. See Chapter 3.
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Chapter 5

Stability of Tra�c Patterns in Networks

with Dynamic Routing

5.1 Introduction

In this chapter, standard control theory is used to model the routing of telephone tra�c.

A model is developed to investigate the maximum delay in the transmission of routing

information that will still allow stability. Simulations are used to validate the model, and

to investigate the multi-service case. Finally, conclusions are drawn about applicability of

the results.

5.2 Present State of the Art

Much work has already been done in the application of dynamic 
ow models to telecom-

munications networks. In a dynamic 
ow model, stochastic variations of tra�c levels are

ignored and an approximation is found for the change in the expected levels of tra�c

using di�erential equations that relate the time varying call arrival rate, blocking rate,

and occupancy levels [KON91, Oht91, FCC89, FC87, LR91].

In [KON91], Kaniyil et al. examine structural instabilities in symmetric telecommu-

nications networks with non-hierarchical routing using potential functions. In this work,

time dependent average quantities are used to characterize the state of the system. The

existence of two stable states at high tra�c levels is shown.

In [Oht91], Ohta uses a dynamic model of a symmetric network to predict the onset of

congestion. The intention is to implement controls prior to congestion to keep the network

operating at full e�ciency. A dynamic 
ow model will show that there is a delay between

the sudden increase in call arrivals and the onset of congestion. Ohta demonstrates the

feasibility of an advanced network management system which makes use of congestion

prediction.

In [FCC89, FC87], Filipiak et al. present a framework for estimating future occupancy

statistics in a communications network based on present measurements of occupancy, ar-

rival rate, and holding time. Good results are obtained by comparing the model predictions
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Figure 5.1: Step Increase in Tra�c at t = 900

with measured values taken from the French telephone network.

In [LR91], Filipiak et al. apply the same theory to the dynamic rerouting that was

part of the Toronto trial of Dynamically Controlled Rerouting (DCR) in the Canadian

Network. Their simulations show that the results obtained are more accurate in the case

of high load than the estimation and prediction methods used in the trial.

5.3 Model of a Single Route

An important component of a network model is the model of a single route. Figure 5.1

shows the rise in tra�c level following a step rise in o�ered tra�c. Using generating

functions, Cooper[Coo81] shows that the expected number of trunks occupied following a

step increase in tra�c from N0 to N1 is given by

N(t) = N1 � (N1 �N0) � exp(�t=Th) (5.1)

where Th is the average holding time of telephone calls, N0 is the initial tra�c level, and

N1 is the new tra�c level.

This system can be modeled as a linear time invariant system with a transfer function
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of

F (s) =
1

(1 + sTh)
(5.2)

In control theory terms, this is a system with a time lag Th. The stochastic variation

about the expected level is regarded as noise and not explicitly modeled. This is a standard

assumption in control theory.

5.4 Stability of Reroute Controls

These studies originated from the development of a telephone network management tool,

called NOAA (Network Operations Analyzer and Assistant). NOAA is described in Ap-

pendix A.

As reroute controls become more automated concerns arise about the stability of the

automated systems. In particular, it is desirable to �nd out how big of a margin exists

between stable and unstable behavior, in terms of the parameters that specify the system.

For this purpose, IRR (Immediate Reroute) and ORR (Over
ow Reroute) controls

are distinguished. An IRR control reroutes tra�c before it attempts the problem route.

Tra�c is diverted elsewhere in the network where spare capacity exists. An ORR control

reroutes tra�c after it attempts the problem route and �nds no capacity available. The

ORR control o�ers that particular call an extra chance of completion.

From a stability viewpoint, one would expect to see fewer problems with ORR con-

trols as each call tries the standard routing �rst and then tries the added routing options

speci�ed by the control. For each call that tries the problem route, its chances of com-

pletion are increased by the implementation of an ORR control. In the case of small

overloads, network throughput can only be expected to increase, as individual calls have

more possibilities of completion.

For an IRR control, if too much tra�c is diverted and the delays in obtaining the

feedback about tra�c information are too great, there is a possibility of instability. Tra�c

from route A could be diverted to Route B which may then experience a problem and �nd

spare capacity on Route A. The overload situation could oscillate between route A and

route B, causing an overall decrease in throughput.

The model in Figure 5.2 was used to analyze a system with two possible routes between

some source destination pair. Observations about the tra�c level on either route are used
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Figure 5.2: Rerouting Model

to decide on what percentage of new call arrivals to divert to the other route. It is assumed

that IRR controls may be applied to either route. This model is simpli�ed in two respects:

� Network Management uses sampled information. Tra�c information from the switches

is typically available every 5 minutes or 30 seconds and not continuously. This is

not modeled here.

� Network Management takes no action until a route over
ows. This could be modeled

by an element in the feedback path such as a relay with dead-space. However that

has not been done here.

The purpose of the analysis is to examine the order of magnitude of the time constants

that could result in instability.

5.5 Model of Rerouting Algorithm

The model of the rerouting algorithm is shown in Figure 5.2. The �gure shows two routes

with an independent stream of tra�c o�ered to both, and some feedback controls based

on the observed tra�c. Observations about the tra�c level on either route are used to
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decide on what percentage of new call arrivals to divert to the other route. Here ui is the

o�ered tra�c on route i and xi is the observed tra�c on route i.

The model includes a delay term of Tf seconds in the feedback of control information.

The model also includes a gain factor k in the feedback path. The gain factor k is a

measure of how much tra�c is diverted by the network management control from a full

route to an empty one in steady state. If � is the fraction of tra�c diverted from a full

route to an empty one in steady state then

k =
�

1� 2�
(5.3)

This can be derived from the model by removing the lag factor and delay once steady

state and constant inputs are assumed. It is assumed that � � 0:5. In other words, the

most aggressive tra�c balancing would split the tra�c equally between trunk groups.

In the NOAA network management application, k = 0:187 but typically k can vary

from 0 to 1 depending on the aggressiveness of the network management.

In the NOAA system, typical values for the holding time Th and the feedback delay

Tf are 3 minutes and 5 minutes respectively.

5.6 Analysis

The system shown in Figure 5.2 is a standard multi-input multi-output system from the

control theory point of view. However the presence of the delay terms makes the analysis

a little more di�cult. Looking at the output of the adders:

x1(1 + sTh) = u1 � ke�sTfx1 + ke�sTfx2 (5.4)

x2(1 + sTh) = u2 � ke�sTfx2 + ke�sTfx1 (5.5)

Grouping terms gives:

x1(1 + sTh + ke�sTf ) = u1 + ke�sTfx2 (5.6)

x2(1 + sTh + ke�sTf ) = u2 + ke�sTfx1 (5.7)

The de�nition of stability is from [DSW73]:

De�nition 1 A system is stable if its impulse response approaches zero as time approaches

in�nity.
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To check for stability, set u1 = 0 and multiply the �rst equation by (1 + sTh + ke�sTf ) to

eliminate x2. This gives:

x1(1 + sTh + ke�sTf )2 = ke�sTf (u2 + kesTfx1) (5.8)

and thus
x1

u2
=

ke�sTf

(1 + Ths+ ke�sTf )2 � (ke�sTf )2
(5.9)

Note that the transfer function for x1=u1 also has the same denominator. A su�cient

condition for instability is for the denominator to be 0 for some value of s on the s = j!

axis. This critical threshold of stability is of interest to us. Looking for a 0 denominator

gives:

(1 + sTh + ke�sTf ) = �(ke�sTf ) (5.10)

or

1 + sTh = �2ke�sTf (5.11)

Setting s = j! and equating real and imaginary parts gives:

1 = �2k cos(!Tf ) (5.12)

!Th = 2k sin(!Tf ) (5.13)

These equations give some interesting results

� For k < 0:5, this mode of instability does not arise. This is a consequence of

equation 5.12.

� The critical value of the feedback time can be solved for given some value of k > 0:5.

For example, if k = 3 and Th = 3 minutes, then it is possible to solve for ! = 3:416

which leads to Tosc = 1:840 minutes for the period of oscillation. Also Tf , the critical

value of the feedback delay, is found to be 0.509 minutes. This suggests that if Tf > 0:509

one should see some signs of instability.

5.7 Simulation Study #1

To verify the e�ects found in the analysis, a simulation is carried out. In the simulation, 80

Erlangs of tra�c are o�ered to each of two routes which are assumed to have 100 trunks.
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A holding time of 3 minutes, a variable feedback delay and a gain of k = 3 are assumed.

The results are shown in Figures 5.3 and 5.4. Instability can clearly be seen for the larger

value of Tf .

5.8 Simulation Study #2

To see how this situation is a�ected by the addition of an additional service with a longer

holding time, a second service is added. The top half of the model in Figure 5.2 is replaced

by the two service counterpart shown in Figure 5.5. The results indicate that the service

with the shorter holding time dominates.

This would seem to indicate that a network that carried speech and short data \con-

versations" would need feedback controls that had time constants with very small delay

to avoid instabilities, assuming a control algorithm similar to those used today.

5.9 Conclusions

Standard control theory has been applied to a network management problem with the

aim of seeing whether the automation of network management controls could result in

instabilities. The conclusion is that this can happen. Careful control of the delays in the
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feedback of information used to calculate routing strategy is necessary in order to prevent

this.

This analysis should be applicable to control schemes such as RTNR (Real Time Net-

work Rerouting) described in [ACF92] and presently implemented in the AT&T long

distance network. The RTNR routing scheme is a dynamic routing scheme that makes

use of cached information to decide the route to be taken for a call. In this chapter, it

is suggested that if the cache becomes too old (perhaps due to delays in the signaling

network), instabilities can arise.
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Chapter 6

Application of Learning Techniques to

Network Management

6.1 Learning Techniques

The learning techniques used in the following chapters include neural networks and linear

predictors. A brief description of both techniques is given here.

6.1.1 Linear Predictors

A linear predictor is really a simple type of neural network whose output is a linear

combination of its inputs. See Figure 6.1.

Suppose there are N inputs xi to the linear predictor, which has weights wi and an

output y. Then the output y for an input vector X is given by:

y(X) =
NX
i=1

wixi (6.1)

Suppose now that there are P input vectors Xp, each of which is of the form (x
p
1; : : : ; x

p
N ),

and a desired output ŷp for each of these input vectors. Then a sum of squared error

(SSE) function E can be de�ned as follows:

E =
PX
p=1

(ŷp � y(Xp))
2 (6.2)

A possible learning rule would be to carry out an adjustment of each weight to minimize

the error E over all the training patterns:

wi(new) = wi � �
�E

�wi

(6.3)

where � is a small constant, termed the learning rate. If the learning rate is too small,

convergence is slow. If the learning rate is too big, there may be no convergence. Trial

and error is used to �nd the appropriate learning rate.

Straightforward di�erentiation gives:

�E

�wi

= �2
PX
p=1

x
p
i (ŷp � y(Xp)) (6.4)
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Figure 6.1: Linear Predictor

From Equations 6.3 and 6.4, provided � is su�ciently small, the optimum weights to

minimize the error, E, with respect to the weights can be found. As a practical matter, an

extra input is always added to the linear predictor which is set to a constant, either 1 or �1.

The constant input gets multiplied by a weight to give a constant term in Equation 6.1.

This allows the linear predictor to estimate a wider range of functions. Equation 6.1 now

becomes:

y(X) =
NX
i=1

wixi + C (6.5)

6.1.2 Neural Network Architectures

Many neural network architectures can be found in the neural network literature, for

example, feed-forward neural networks, recurrent neural networks, and Hop�eld networks.

Feedforward neural network will be discussed shortly. Recurrent neural networks are

similar to feed-forward networks, except that they contain feedback connections. Hop�eld

networks are usually used for optimization problems. In this thesis, feed-forward neural

networks are mainly considered. A good reference for all these architectures and associated

training techniques is [HKP91].
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6.1.3 Feed-Forward Neural Networks

The feed-forward neural network is one of the most widely used neural networks. An

example of a simple feed-forward neural network is shown in Figure 6.2. In this case, the

output y as a function of the inputs x
p
1 and x

p
2 for input pattern p is given by:

y =
3X

i=1

Wi tanh(
2X

j=1

wijx
p
j � �i)�� (6.6)

Here �i, the threshold term, can be treated as a weight applied to an extra input set to a

constant -1. In this case, there are 3 so-called hidden units, each with output:

hi = tanh(
2X

j=1

wijx
p
j � �i) (6.7)

If it is assumed that there are P input vectors Xp, each with a desired output ŷp, an

SSE term E can be de�ned:

E =
PX
p=1

(ŷp � y(Xp))
2 (6.8)

The �rst layer weights are updated according to:

wij(new) = wij � �
�E

�wij

(6.9)

Similarly, second layer weights are updated according to:

Wi(new) =Wi � �
�E

�Wi

(6.10)
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using the Back-Propagation algorithm [HKP91].

6.1.4 Back-Propagation

The Back-Propagation algorithm can be derived by di�erentiating Equation 6.8 with re-

spect to the appropriate weight. It derives its name from that fact that errors are propa-

gated from the network outputs towards the network inputs.

De�ne ep as the error when input pattern p is presented. Then

ep = ŷp � y(Xp) (6.11)

and the total error E is given by:

E =
PX
p=1

e2p (6.12)

The desired derivative for any weight w is given by:

�E

�w
=

PX
p=1

�ep

�w
(6.13)

The derivative of ep with respect to Wi is given by:

�ep

�Wi

= �2ephi (6.14)

where hi is the output of the hidden unit, given by Equation 6.7. The derivative of ep

with respect to wij is given by:

�ep

�wij

= �2ep(1� h2i )x
p
j (6.15)

using the chain rule for di�erentiation and the fact that

� tanh(x)

�x
= (1� tanh(x)2) (6.16)

By substituting Equations 6.14 and 6.15 in Equation 6.13 and then using Equations 6.9

and 6.10, the desired weight update can be calculated.

6.2 Motivation for the use of Neural Networks

Neural networks have traditionally been used for pattern recognition and pattern classi�-

cation and are well suited to this task. The weights in such networks can be learned from
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sample data and training can be done using the well known backpropagation algorithm

[HKP91].

The neural network approach is valuable for a number of reasons. Firstly the neural

network has the ability to learn. Many software systems in the telephone network require

the intervention of humans if the implemented function is to be modi�ed. Neural networks

on the other hand contain their \program" in their weight settings and can even contin-

uously update their weights as they are running. This automated learning capability is a

key bene�t of neural networks.

In addition to the ability to learn, the neural network has the ability to generalize on

data that was not present in the training set. Neural networks have been characterized as

universal function approximators [Bar93, Cyb89, HSW89]. In other words, given su�cient

number of hidden units, neural networks can approximate any given well behaved function.

Conversely, given fewer hidden units, a smoother version of the target function can be

learned. This explains the ability of neural networks to generalize well, even on input

data that contains a lot of noise and artifacts. Neural network are compared to other

non-linear function approximation techniques in chapter 9.

6.3 Network Management

The task of network management is to monitor the network, identify any anomalies in

the network, and, if necessary, place controls in the network to allow revenue generating

tra�c to complete and block any tra�c that has a low probability of completion.

6.4 Applications of Learning Techniques to Network Man-

agement

In the following chapters, a number of applications of learning techniques to network

management are considered:

Recognition of Tra�c Patterns Clearly this is an integral part of the job of network

tra�c managers.

Aiding Congestion Control If the network becomes congested, then various controls

are available to the tra�c manager to relieve this congestion. The neural network

can learn the thresholds of when to apply such controls.



59

Time Series Prediction of Trunk Group Occupancy As network management be-

comes more automated, it is possible to predict trunk group occupancy and place

reroute controls that require fewer adjustments to changing tra�c conditions in the

network.

Conclusions on the applicability of the learning techniques are given in each chapter.
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Chapter 7

Classifying Telephone Tra�c Patterns

7.1 Introduction

Network management of communication networks is an activity that is becoming increas-

ingly automated. The impetus for this automation is �rstly the increased computing power

available to help provide a rapid response to changing network conditions and secondly

the adoption of common standards for the exchange of information between the systems

being managed and the management systems.

Operators may use expansive or restrictive controls to respond to network exceptions.

Expansive controls are used if the network contains capacity that can be used to carry some

of the extra tra�c. Expansive controls reroute calls in order to give them an extra chance

of completion. Restrictive controls are used if the extra tra�c has a low probability of

completion and is interfering with normal network operations. Restrictive controls relieve

congestion by cutting down on tra�c at the point it enters the network.

Network exceptions that the operators can monitor are trunk group over
ows, trunk

group high occupancy, and switch alarms. Each trunk group can handle a limited number

of conversations, and if too many call attempts are o�ered, the trunk group occupancy

will rise and eventually call attempts will be rejected. This is referred to as trunk group

over
ow. The network management center receives data for every trunk group in the

network every �ve minutes.

Switches can also indicate the onset of congestion or the existence of certain conditions

by means of switch alarms. The network management center receives a list of switch alarms

in the network every thirty seconds.

7.2 Pattern Matching of Network Events

The following is a partial list of network events of interest to network management:

� single random trunk group over
ow

� loss of a transmission link
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Figure 7.1: Tra�c Pattern Recognition System

� loss of a switch

� call-in situation, e.g. concert tickets on sale.

� unusual tra�c patterns, e.g. Mothers' Day.

� weather day, e.g. heavy day of snow.

� natural disaster, e.g. earthquake.

Ideally, the operator would wish to know the event type, the event location, and the

event severity. If it is assumed that occasionally new event types occur, then the operator

would also wish to know to that this event type is not one previously observed.
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Figure 7.1 shows the information 
ow for a system that could provide this information.

The current list of exceptions and controls is compared to historical data to check the sig-

ni�cance of the departure from normal state. The �ltered tra�c pattern is then compared

to a table of known tra�c patterns and classi�cation is performed. If the tra�c pattern

is su�ciently di�erent from known tra�c patterns, then the classi�er should indicate this

result.

Some similarities exist between this and character recognition. The di�erences are

that the tra�c pattern learning system should be capable of unsupervised learning and

detection of new classes.

The bene�ts of such a system as an extra resource for the decision making process of

the network management operators or of the NOAA expert system are obvious.

7.3 Data Set

The data set for this study consisted of 125 days of tra�c data from June 1994 to Jan

1995 with some gaps. The logged data for each day consisted of a list of network over
ow

exceptions and network controls that were present in the network every 5 minutes.

This logged data was too much data and too little data at the same time. Too much

because of the work involved in extracting historical records from 600 Mbytes of data,

and too little because the number of abnormal events was so few. During the period of

interest, observed one weather day, and a small number of call-ins were observed. No

other signi�cant deviation from normal operations was observed.

7.4 Filtering of Signi�cant Events

The approach taken to �lter out signi�cant events from the large data set was to remove

routes that regularly or even occasionally over
ow. This was done by plotting the data

on a grid and then estimating the probability that a given pixel would indicate activity

at that particular day at that particular hour. This is equivalent to looking at prediction

residuals when inferring the state of the network and is similar to the Hidden Markov

Model techniques of Section 9.13 of Chapter 9.

Figure 7.2 shows an example of a 64x64 pixel map. Each pixel is turned on if at that

time there is a network exception or control in that geographic area.
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Figure 7.2: Example of a Pixel Map Indicating Network Activity

The real data was examined on a grid of size 50 miles by 50 miles centered on Los

Angeles broken up into 64x64 pixels. Each pixel was a square with a width and height of

50/64 miles. The size of grid chosen was a compromise. Too small a grid and one does not

get a global view of the network. Too large a grid and the chances of two simultaneous

events taking place increases and classi�cation is more di�cult. The 50 mile by 50 mile

grid seemed to work well.

As mentioned above, an estimate p(i; j; t), the probability of a pixel at position (i; j)

being turned on at time t, was sought. The time t was speci�ed to accuracy level of a given

hour on a given day. For example, a unique record would be associated with Thursdays

10am to 11am.

The data for estimating this probability was a history of some number N of previous

records for this day and time, on which the pixel was turned on on x occasions.

Two choices arose for the estimation of probabilities. The Maximum Likelihood (ML)

estimator is:

p̂M (i; j; t) = x=N

and a Bayes estimator making certain simplifying assumptions discussed below is:

p̂B(i; j; t) =
x+ 1

N + 2

The ML estimator maximizes f(xj�) with respect to � where f is the probability density

function, x is the observation, and � is the parameter being estimated.
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Figure 7.3: A Rainy Tuesday in Los Angeles Before and After Filtering. Filtering Removes

Routes that Regularly or Even Occasionally Over
ow on that Day at that Time.

The Bayes estimator is E(�jx), the expected value of the unknown parameter � given

some observation x. The Bayes estimator requires the speci�cation of a prior distribution

for the parameter �. The prior distribution contains the best estimate of � prior to taking

any measurements. Here the prior distribution was taken to be a uniform distribution

between 0 and 1. Refer to [Ros87] for details of how both ML and Bayes estimators are

derived for a Bernoulli trial as is the case here.

For probabilities that are small and limited data, the Bayes estimator does a better job

of estimating the probability, especially with regard to testing the signi�cance of future

events. Consider the case where there are seven records, none of which show the pixel on.

The ML estimator gives p̂M = 0:000. The Bayes estimate gives p̂B = 0:125. If in the

next record, it is found that the pixel turned on, this has a probability of 0:000 using

the ML estimator and 0:125 using the Bayes estimator. The Bayes estimator, because it

avoids zero probabilities, is more useful.

Each pixel of the pixel map can be assigned a probability of being on at any given

time. A �ltering step can then be carried out to show only pixels that are signi�cant at

the 97% level. An example of such a �ltered image is given in Section 7.5.
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7.5 Results

Figure 7.3 shows the results of the �ltering step on a Tuesday afternoon with 
oods and

really heavy rain in Los Angeles at 3pm. The left part of the diagram shows the pixel

map before �ltering. The right part shows the pixel map after �ltering. Filtering is at

a signi�cance level of 97%. Pixels that are turned on represent network exceptions or

controls.

Of all the pixels in the map, only 57 pixels have non-zero probabilities because they

denote the location of telephone switches. The hypothesis that this is a normal Tues-

day afternoon can be rejected at a 99.4% con�dence level, assuming 6 successes from

57 Bernoulli trails with p � 0:03. The signi�cance �gure is information that the event

classi�er can use to recognize events.

It could be argued that the map pixels are not independent. Taking account of the

fact that trunk groups are used to connect switching o�ces, one can imagine a more strict

test for signi�cance that would divide the number of pixels turned on by 2 to account for

the fact that a problem on a single trunk group could result in two pixels being turned

on, one at either end. The probability of a success would similarly be divided by 2, giving

p � 0:015. Now with 3 successes from 57 trials, the calculated signi�cance �gure is still

above 96%.

7.6 Conclusions and Future Work

This has been a �rst attempt at learning tra�c patterns that are present in telephone

networks. Some success has been obtained in detecting tra�c patterns that are di�erent

from normal. An e�cient and easy to implement pattern �ltering stage has been proposed.

As more data is obtained, the emphasis will be on the unsupervised learning of tra�c

patterns. Options for this unsupervised learning are:

� Generative Models[SM92, Smy94]. Storing a template and using that as the pattern

to be matched should be a feasible classi�cation method. If the distance between

the new pattern and the stored patterns is too great then a new class is declared.

� ART[HKP91, SB94] is a classi�cation technique that has an adjustable vigilance

parameter that controls when new classes are formed. It should be straightforward
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to use the pixels as binary inputs for ART.

� clustering e.g. k-means[HKP91]. This is a standard method of unsupervised learn-

ing.

The use of a HMM (Hidden Markov Model) suggests itself as a means of increased

con�dence in the assessment of the hidden state of the system, given a set of observables

[Smy93, GA93, Smy94]. HMMs are discussed in Section 9.13 of Chapter 9. However, the

\attack phase" of network events is the primary interest, in order to provide the correct

response, and the HMM is less useful during this phase.

In summary, there is hope for the development of an automated network tra�c pattern

recognition system, and some of the necessary steps in �ltering network tra�c pattern data

have been successfully carried out and reported upon in this chapter.
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Chapter 8

Learning Telephone Network Trunk

Reservation Congestion Control using

Neural Networks

8.1 Introduction

Congestion control is an important topic in the design of telephone networks and will be

even more so in the design of ATM networks. In this chapter, neural networks are used to

decide the level of trunk reservation to apply in congestion situations. The communication

networks investigated are symmetric fully connected telephone networks.

8.2 Trunk Reservation

8.2.1 De�nition

A simple example of a small network is given in Figure 8.1. This shows a simple �ve node

network, with nodes labeled A to E. Each pair of nodes has a set of links between them.

This small network can be used to demonstrate the concepts underlying trunk reservation.

Calls are usually set up using either one or two hops. For example, a call from A to

E could be setup using either the trunks from A to E, or else A to B and then B to E.

In lightly loaded tra�c conditions, using two hops allows more opportunities to complete

telephone calls. However in heavily loaded tra�c conditions, the two trunk groups used

by a two hop call could instead be used to set up two one hop calls and reduce the network

blocking.

One hop tra�c is called direct routed tra�c. Two hop tra�c is called alternate routed

tra�c.

De�nition 2 Trunk reservation is a policy whereby in each trunk group, alternate routed

tra�c is blocked if there are fewer than R trunks free on the trunk group. R is known as

the trunk reservation parameter.
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8.2.2 Simulation

Trunk reservation favors the direct routed tra�c at the expense of alternate routed tra�c,

increasing the network e�ciency in times of high load. The parameter R can be very small

and still have a substantial e�ect, as is illustrated in Figure 8.2.

In this �gure, the probability of a new call arrival being blocked in a symmetric network

is shown. The network has 10 nodes and 100 trunks between each pair of nodes and 111

Erlangs o�ered to each trunk group. Trunk reservation is only enabled 2.5 minutes into

the simulation. A trunk reservation parameter of 1 is used. The blocking shows an almost

immediate decrease. The decrease is not immediate because trunk reservation is a blocking

policy which blocks alternate tra�c, so that shortly after trunk reservation is enabled the

probability of being blocked on a direct route is unchanged but the probability of being

blocked on an alternate route has increased. Soon a new equilibrium is reached in which

the overall blocking is decreased since less calls are blocked on the direct route.

Figure 8.3 shows an alternate view of the e�ect of implementing trunk reservation.

Here the percentage of direct routed calls to total calls is plotted during the course of the

simulation. Once again, enabling trunk reservation on all trunk groups at t = 2:5 minutes

into the simulation has a dramatic e�ect on increasing the proportion of direct routed

tra�c in the network. The peak at t = 1 minute is due to an initial transient as calls

arrive to an empty network.

Figure 8.4 demonstrates that an overload situation is indeed being simulated. It plots

the state probabilities, that is, the probability of n trunks occupied out of a 100 on a

typical trunk group, at t = 2:49 minutes. This is just prior to trunk reservation being

enabled. Clearly there is a signi�cant probability that all 100 trunks are occupied on the

trunk group, indicating that the network is in an overloaded state.

8.2.3 Known Results Concerning Trunk Reservation

Akinpelu in [Aki84] shows that trunk reservation prevents networks having two stable

states at high loads. Kelly in [Kel94] references a result by Hunt and Laws that a policy

that chooses the least busy alternative for routing and implements trunk reservation is

an asymptotically optimal policy in minimizing blocked tra�c, as the number of network

nodes increases.

Closed form solutions for the correct value of the trunk reservation parameter, R, to
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use as a function of network load, tra�c mix on the trunk group, and number of trunks on

the trunk group are not known, except in the asymptotic case for symmetric networks with

many nodes and the same tra�c o�ered to each node [MS91, MG92]. In this chapter, a

neural network is used to choose the value of the trunk reservation parameter as a function

of input variables that will be described later.

In the remainder of the chapter, the constraints for this problem, training the neural

network, the architecture of the neural network, the tra�c mix, results, and conclusions

are discussed.

8.3 Constraints

In a large network, it is unrealistic to expect each node to have a global view of the network.

This is especially true when the network contains switches from di�erent vendors. In such a

case, there would have to be agreement between the vendors on the format of the messages

communicating the switch state between all the switches. Such agreement could take years

to accomplish. Instead it was decided to require the inputs to the neural network to be

local information, in other words, statistics about the route or statistics about the switch

to which the route is attached.

The system proposed would have RN separate neural networks, where RN is the num-

ber of routes in the network. Since each neural network is being trained to optimize trunk

reservation on a single trunk group, questions of global network stability would have to

be addressed before implementing such a system. These questions are not addressed in

this study.

The main bene�t of using a neural network on this problem is the ability of the network

to adjust its weights to re
ect changes in the nature of the tra�c in the communications

network. An indirect learning approach is taken. In this case, the neural network is

not provided with training examples taken from analytical studies of trunk reservation.

Instead, simulation is used to provide the training set. The neural network is required to

adjust its weights to minimize the overall network blocking in the simulated network.
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Figure 8.5: Neural Network Output

8.4 Neural Network

The neural network has two inputs and two hidden units. A linear output unit is used

to aid in function �tting. Since good results were obtained with two hidden units, the

number of hidden units was not varied. Equation 8.1 de�nes the neural networks output

y in terms of the neural network inputs xi and neural network weights, wij , Wi, �i and �:

y =
2X

i=1

Wi tanh(
2X

j=1

wijxj � �i)�� (8.1)

The inputs are the switch loading and the tra�c mix. The switch loading is de�ned

to be the number of occupied trunks attached to the switch divided by the total trunks

attached to that switch. The tra�c mix is de�ned to be the number of direct routed

calls on the trunk group divided by the total number of calls on the trunk group. This

second parameter was used experimentally. The results indicate it does not have a strong

in
uence on the value of the trunk reservation parameter chosen and could be left out.

See Figure 8.5.

The neural network will output fractional values for trunk reservation. These are

interpreted as follows. If the trunk reservation parameter from the neural network is 0.3,

then 0.3 of the time a trunk reservation parameter of 1 is used, and the remainder of the
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time a trunk reservation parameter of 0 is used.

Each simulation cycle represents a 3000 minute or 50 hour tra�c simulation. This

generates about 18000 test cases and 18000 training cases. Each training case or test case

fell into one of the following classes:

� A direct routed call is blocked because the trunk reservation parameter is not high

enough. The training data contains a new higher value of trunk reservation.

� An alternate routed call is blocked, indicating that the trunk reservation parameter

is too high. The training data contains a new lower value of trunk reservation.

� To keep the neural network output steady in regions of the input space that rarely

experience blocking, 1% of the simulated call arrivals are used as training data,

keeping the value of the trunk reservation parameter unaltered.

Quickprop [Fah88] is then run for 200 iterations to tune the neural network weights.

About 10 such simulation cycles are necessary to get good results. See Figure 8.6.

8.5 Tra�c Mix

For the tra�c simulation, a mixture of light (4.4 Erlangs), medium (6.7 Erlangs) and

heavy (8.9 Erlangs) tra�c is used. The simulated network has 10 nodes and 10 trunks

between each node. Because light tra�c occurs far more often in real life than medium

or heavy, a weight of 0.8 is given to the light, 0.15 to the medium and 0.05 to the heavy

tra�c for the purpose of computing blocking.

The light, medium or heavy tra�c level is indirectly input to the neural network

through the switch load input variable. As the tra�c level increases, the expected switch

load will increase also.

It is important to note that online training in a \live" network could be substituted for

the tra�c simulations. Once enough new training cases were available, the neural network

weights could be tuned. In this way the neural network could continually adjust itself to

the tra�c mixes found in the real network.
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Blocking Standard Deviation

Neural Network (train) 0.0129164 0:0000348

Fixed Res of 0 (train) 0.0148592 0:0000568

Fixed Res of 3 (train) 0.0158059 0:0000341

Neural Network (test) 0.0129246 0:0000368

Fixed Res of 0 (test) 0.0148622 0:0000477

Fixed Res of 3 (test) 0.0157703 0:0000417

Table 8.1: Blocking for Neural Network and Fixed Reservation Parameters
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Figure 8.6: Learning the Trunk Reservation Problem

8.6 Results

Figure 8.6 shows how the training and test error decrease with the number of simulation

iterations. The results show the averages over 10 runs with di�erent initial random seeds

for the tra�c simulator. The random nature of the telephone tra�c being simulated is

the main reason for the di�erence between the test and training curves. With longer

simulation times, the performance on the training set should surpass the performance on

the test set, as one would intuitively expect.

The results are given in tabular form in Table 8.1. The results indicate a 13% decrease

in blocking compared to not using any trunk reservation. An even greater decrease is

found compared to using a value of 3 for the trunk reservation parameter.
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8.7 Drawbacks of Algorithm

The algorithm described in Section 8.4 does not necessarily minimize blocking. Indeed a

simple counting argument can be used to show that the algorithm performs badly at high

tra�c levels.

To see this, consider the case where the tra�c load is extremely high. For example, the

o�ered tra�c may be 10 times the tra�c that the network is able to carry. In this case,

the majority of calls will be blocked. Each blocked call results in one training case for

increased trunk reservation and four training cases for reduced trunk reservation using the

algorithm described in Section 8.4. The four cases for reduced trunk reservation are due

to call attempts on the two legs of the �xed alternate and the NOAA suggested alternate.

The tra�c simulator assumes NOAA type routing as in Chapter 3. Since there are more

training cases for reduction of trunk reservation than increase of trunk reservation, the

trunk reservation will be reduced to zero. Clearly this is not desirable in a high tra�c

situation.

The following sections explore why the basic algorithm works at all for medium tra�c

levels, indicate the di�culty of �nding the optimum trunk reservation policy and describe

an improved training algorithm which exhibits good behavior at all tra�c levels.

8.8 Principle of Basic Algorithm

The basic learning algorithm seeks to strike a balance between blocked direct routed calls

and blocked alternate routed calls, as shown in Figure 8.7. However the optimum trunk

reservation algorithm would allow more blocked alternate calls at high tra�c levels, as

shown in the �gure.

The question arises: can the optimum trunk reservation algorithm that minimizes

overall blocking be learned by measuring network blocking? In practical terms, the answer

is no. The overall blocking B can be written as a function of the network topology N , the

network tra�c T , and the trunk reservation policy as expressed by a set of neural network

weightsW. The network topology N is a list of nodes and links along with a speci�cation

of link sizes. The network tra�c T is a list of o�ered tra�c values between node pairs.

B = f(N ; T ;W) (8.2)
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In real life, the network topology changes from day to day and the network tra�c

from hour to hour. The tra�c never exactly repeats itself. Thus it is di�cult to gauge the

change in blocking produced by a change in weights W when it is so strongly a�ected by

the changing network topology and the changing tra�c. This makes learning the optimum

trunk reservation policy by noting changes in blocking and correlating this with changes

in the weights extremely di�cult.

However the basic learning algorithm can be improved upon by studying more closely

the process of trunk reservation.

8.9 Trunk Reservation Revisited

Consider a trunk group of size N with a trunk reservation parameter R of 1. When there

are less than N � 1 trunks occupied or exactly N trunks occupied, the trunk reservation

parameter does not in
uence network behavior.

When there are exactly N � 1 trunks occupied and an alternate routed call arrives,

trunk reservation causes this alternate routed call to be blocked. The expectation is that

a direct routed call will arrive shortly that can make better use of the free trunk.

From this viewpoint, trunk reservation can be looked upon as a bet. When an alternate

routed call is rejected, the network loses revenue, but the bet is that a direct routed call

will arrive within a short length of time that will produce more revenue, because it makes

more e�cient use of network resources. The longer it takes for the direct routed call

to arrive, the bigger the revenue loss from rejecting the alternate routed call. This is

illustrated in Figure 8.8.

If it is assumed that the alternate routed call has a holding time of Th, and the direct

routed call has twice the revenue generating potential of an alternate routed call, then the

point when the bet has been lost is about 2=3Th after the alternate routed call has been

rejected.

8.10 Improved Algorithm

The improved algorithm generates test cases and training cases as follows. For each

alternate routed call that encounters trunk reservation, a test is carried out. The neural

network inputs are noted at the time the call arrives. Then a count is carried out of the
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number of direct routed calls that arrive subsequent to the alternate routed call and get

blocked. The counting period is two thirds of a holding time. The number of blocked

direct routed calls is written to a training �le as the desired value of trunk reservation on

the route.

Since the tra�c mix input variable has little e�ect on the trunk reservation, this input

variable for the neural network is removed and a variable called the alternate success rate

is substituted. The alternate success rate is an exponential moving average of the rate at

which calls are successfully carried after failing to get a trunk on the direct route. The

rationale is that if there is spare capacity on the alternate routes, then there is less of

a need to provide trunk reservation. The results show it impacts the level of suggested

trunk reservation in the expected way.

The interpretation of fractional values of the neural network output is also changed.

If the output of the network is 0.1, this indicates that the \bet" would be lost 9 times

out of 10. Given this interpretation, a rounding approach is taken, i.e. 0.1 is rounded to

a trunk reservation of 0. Similarly a neural network output of 0.9 is rounded to a trunk

reservation value of 1. In other words rounding to the nearest integral value is used or,
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the bet is taken if the chance of winning is over 50%.

The results for the revised algorithm are given in Table 8.2. The function learned by

the neural network is given in Figure 8.9. A new entry has been added to Table 8.2 giving

the results for a trunk reservation parameter of 1.

While the old algorithm is beaten by a �xed trunk reservation of 1 trunk, the new

algorithm beats any �xed level of trunk reservation.

For comparison, the table also shows the performance of the neural network compared

to a linear predictor with the same inputs and outputs. The neural network performs

slightly better. Over 10 runs with di�erent random seeds for the tra�c simulator, the

di�erence between the two methods is found to be non-zero at the signi�cance level of

98%. The di�erences in blocking performance are given in Table 8.3. It can be concluded

that the neural network would be slightly better than the linear predictor in learning this

problem.

8.11 Conclusions

In this chapter, neural networks have been applied to telephone network congestion relief

and done better than the conventional technique of a �xed reservation scheme. In addition,

it has been shown that:
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Blocking Probability Standard Deviation

Neural Network (train) 0.0129164 0:0000348

Linear Predictor (train) 0.0127636 0:0001319

Improved Neural Network (train) 0.0127596 0:0000317

Fixed Res of 0 (train) 0.0148592 0:0000568

Fixed Res of 1 (train) 0.0129114 0:0000369

Fixed Res of 3 (train) 0.0158059 0:0000341

Neural Network (test) 0.0129246 0:0000368

Linear Predictor (test) 0.0127756 0:0001106

Improved Neural Network (test) 0.0127517 0:0000374

Fixed Res of 0 (test) 0.0148622 0:0000477

Fixed Res of 1 (test) 0.0129276 0:0000336

Fixed Res of 3 (test) 0.0157703 0:0000417

Table 8.2: Blocking Probabilities for Improved Neural Network and Fixed Reservation

Parameters

Blocking Di�erence

-0.0000195

-0.0000397

-0.0000544

-0.0000159

0.0000205

-0.0000563

-0.0000214

-0.0000293

-0.0000306

0.0000077

Table 8.3: Blocking Di�erence for Neural Network and Linear Predictor as the Initial

Random Seed for Tra�c Simulation is Varied. Negative Numbers Indicate the Neural

Network is Better.
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� The neural network can be applied to a di�cult indirect learning problem.

� In the test network, a large decrease in average blocking is seen.

� By substituting live tra�c for the simulations in this chapter, the neural network

can learn in real-time.

It should be possible to extend the results in this chapter to networks containing

trunk groups of di�erent sizes. This would require an extra input to the neural network

containing this information, and longer simulation runs to make sure all parts of the input

space are well represented.
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Chapter 9

Time Series Prediction of Telephone

Tra�c Occupancy

9.1 Introduction

In this chapter, a number of methods for time series prediction of the occupancy statistic

are considered. The advantages and disadvantages of each are discussed. The results are

given in Table 9.4 on page 103 and Table 9.5 on page 103.

Although the problems described in this chapter are concerned with monitoring tele-

phony tra�c, the techniques should be applicable, with little modi�cation, to the monitor-

ing of any large network. For example, rather than monitor trunk group occupancy, the

network manager may be monitoring link throughput, but the same analysis techniques

should apply.

It would be useful to be able to predict telephone tra�c occupancy on trunk groups

prior to putting reroute controls in the network for two reasons. First, it may be possible

to monitor occupancy on all the trunk groups in the network and implement a reroute

control when the occupancy trend shows that a route is in danger of over
owing. Second,

there is a delay between when capacity information is obtained for a trunk group and

when a control is put in the network. This data gathering delay is of the order of two or

three minutes. If NOAA's recommendations are made on the basis of predicted occupancy

rather than occupancy, it may result in a need for fewer adjustments to the control.

For this study, data was gathered while NOAA was running, logged to a �le and

examined in Caltech with a view to carrying out time series prediction.

One of the main motivations in beginning the study is to see whether the use of neural

networks would give a signi�cant advantage in carrying out time series prediction because

of their ability to realize non-linear functions of their inputs.

9.2 Data Set

De�nition 3 Occupancy is a moving average of twenty samples of the number of trunks

occupied on a route. The samples are taken every 30 seconds, and the result is scaled to
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be between 0 and 100%.

� Occupancy is a good indicator of the spare capacity of a trunk group.

� Occupancy is reported every 5 minutes.

Two data sets were gathered:

� A short data set with about 1500 observations of occupancy on a single trunk group

with 144 trunks between Los Angeles and Pasadena over the course of a week. The

data set went from Friday to Friday with some gaps. This data set was used to

compare various methods for time series prediction. In all cases, the aim was to

estimate y7 given y1; y2; : : : ; y6

� A long data set consisting of 18000 observations of occupancy on a trunk group with

360 trunks between Los Angeles and Gardena. This provides about 10 weeks worth

of data. This data set was used to help model the daily pro�le of occupancy on a

trunk group and the spike component of the occupancy statistic.

In all cases, an estimate y7 given y1; y2; : : : ; y6 is desired. The reason this many co-

e�cients are chosen is that the autocorrelation function has died down to close to zero

by the sixth coe�cient. This is illustrated in Figure 9.2. The autocorrelation of the �rst

order di�erence of occupancy was plotted, since the occupancy process does not have a

zero mean. In contrast the �rst order di�erence of occupancy is very close to be a zero

mean process, making the autocorrelation coe�cients easier to interpret.

The occupancy for every trunk group in the network is reported every �ve minutes.

The �rst 300 points of the short data set are shown in Figure 9.1. Some key features to

note are:

� The tra�c level varies according to time of day. The plot shows the tra�c level

dropping on Friday evening, rising again on Saturday morning, and remaining level

during Saturday afternoon.

� Spikes may be present in the time series, e.g., close to example 60.

� The variance of the occupancy varies with the tra�c level. The plot becomes more

jagged as the trunk group occupancy increases.
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9.3 Simulation

For comparison, a simulation program was written. For the simulation, memoryless ar-

rivals and memoryless holding times are assumed. A constant tra�c level is assumed,

although this could have been easily changed to test more advanced models of the daily

variation of occupancy or the occurrence of spikes.

A plot of the �rst 300 points of a simulation of 36 Erlangs of tra�c is given in Figure 9.3.

The method of simulation employed is to make a list of instants, each instant corre-

sponding to one of the following.

� A random call arrival (in fact the inter-arrival times which have a negative exponen-

tial distribution are simulated).

� A random call departure (using the fact that the holding time has a negative expo-

nential distribution).

� A deterministic sample time, where a record is made of the number of trunks occu-

pied.
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Figure 9.3: Simulation of 36 Erlangs of Tra�c

The list is then sorted and processed sequentially to yield a simulation of the occupancy

statistics for the trunk route.

The main di�erence between the simulation and the real data is that the simulation

shows much less variability due to time of day or tra�c spikes. However the simulation

does show some variability due to the random nature of call arrivals.

9.4 Cross-validation

In testing the relative merits of prediction techniques, a distinction must be made between

learning ability and generalization ability. A good prediction method will generalize well

on examples that have not been seen before, by learning the underlying function without

learning the associated noise.

The �rst step in testing a method is the division of the supplied data set into a test

set and a training set. The training set is used to derive the coe�cients of the model and

the model is then tested on the test set. In testing two or more models, the one that does

best on the test set is the better one.
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There are two reasons a model may not do well on a test set.

1. The model may not be able to provide a function that closely �ts the function that

is to be estimated. For example, a linear model will not �t a non-linear function

well across all of its input space.

2. The model may provide too rich a space of functions and return a function that

implements the noise in the data set as well as the underlying function. Such a

model will not generalize well.

This can be tested using cross-validation. With v-fold cross-validation and a data set

of size N , v tests are carried out. Each test employs N �N=v samples as the training set

and the remaining N=v samples as the test set. This makes maximum use of the data set

and allows us to check the signi�cance of the results.

Strict cross-validation involves using a test set of one example and training on the

remaining examples. This is done repeatedly leaving out one example at a time. In this

way, maximum use is made of the data set in determining the generalization performance

of the models. Strict leave-one-out cross-validation would have been better but results in

a lot more computation time. A single run for the neural network took about a week on

a Sun Sparc 10, and strict leave-one-out cross-validation using the same software would

have taken almost a year. The back-propagation algorithm [HKP91] is the culprit for the

long run times, in addition to the need to duplicate the runs to assess the a�ect of the

random weights used for initialization.

An advantage of using cross-validation is that it provides some measure of the signi�-

cance of the result. When comparing two models, one model may do better than another

because (i) it more closely represents the underlying function or (ii) by chance it more

closely represents the test set noise terms. By repeating the experiment using a second test

set, an indication of the signi�cance of the second factor is obtained. The more repetitions

of the generalization test are carried out, the more signi�cant the results for generalization

capability.

For this study, the examples are �rst shu�ed to randomize the order and then 50-fold

cross-validation is carried out. It is found to be important to keep the ordering of examples

the same among the di�erent methods.
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9.5 Notation

The time series prediction problem can be generalized to one of function approximation.

Given a number of examples of a function plus noise, a function is desired that closely

matches the training data and generalizes well on any new data that is supplied. It is

easily shown that the function that minimizes the mean square error in the long term is

the expected value function.

Consider a typical time series x1; x2; : : : ; xn. An estimate x̂n+1 = f(x1; x2; : : : ; xn) of

the value of the time series at the next time step is desired by choosing f to minimize a

loss function L = E(xn+1 � f)2. Di�erentiating with respect to f and setting the result

to zero gives

f = E(xn+1jx1; x2; : : : ; xn) (9.1)

Di�erentiating again with respect to f shows that this is indeed a minimum.

From this result, it is seen that time series prediction is a special case of the more

general function approximation problem where the function that must be approximated is

the expected value function. This observation allows the use of many results that have been

derived over recent years about function approximation [Bar93, Cyb89, HSW89, UM91].

This is of particular importance for neural networks.

9.6 Motivation

An example is used to motivate the use of non-linear predictors. Consider a stationary

discrete time random process x1; x2; : : : ; xn with the following properties 8n:

1. xn is a �rst-order Markov process, i.e., the value of xn+1 depends on the value of xn

only and no extra information is provided by observations x1; x2; : : : ; xn�1.

2. p(xn) =
T
A

e
�
xn
T

(1+�xn)
with a normalizing constant A = T

�
e

1
�T Ei( 1

�T
)

3. p(xn; xn�1) =
1
A
e�

(xn+xn�1+�xnxn�1)

T

The optimum predictor is

E(xn+1jxn) =
T

(1 + �xn)
(9.2)

which is non-linear in xn.
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9.7 Linear Predictor

9.7.1 Introduction

In the past, the linear predictor has been the mainstay of statistical prediction techniques

and regression analysis [Ros87, Chr91, WG94, BJR94, DH87, Pan91]. A regression model

attempts to predict the value of a dependent variable from one or more independent

variables. If the dependent variable is a continuous function of the independent variables

and if the input space for the independent variables is small enough, then a linear regression

model can give good results.

9.7.2 State of the Art

The �eld of regression analysis is well developed [Ros87]. Least squares estimates of the

regression parameters for a regression model can be obtained. These estimates minimize

the sum of the squares of the residuals with respect to the regression parameters. An

assumption that is usually made is that the regression errors are independent, identically

distributed normal random variables with mean 0 and some variance �2. Given this

assumption, the distribution of the regression parameters can be found to be a normal

distribution with known mean and variance. Con�dence intervals can be derived for the

regression parameters. Similarly con�dence intervals for the predicted values can also be

obtained. An index of �t which is a measure between 0 and 1 is de�ned which measures

how good the regression �t is.

In the seventies, Box and Jenkins wrote a de�nitive text book on the subject of time

series prediction [BJR94]. A procedure for developing models of time series is proposed

which put an emphasis on parsimony of model parameters. The analysis of correlation

coe�cients of the data is shown to be an important step in the selection of an appropriate

model. Moving average and autoregressive stochastic models are described. The use of

di�erencing techniques to deal with non-stationarities is described.

In the signal analysis arena, the subject of modeling of time series is equally important

and there has been much work on the modeling of associated stochastic processes [Hay91,

PP80, Lat89, Sch87]. For stationary processes the linear predictor coe�cients are related

to the autocorrelation coe�cients by the Wiener-Hopf equations [Hay91]. The Wiener-

Hopf equations are not used here, but it is interesting to note that they are very similar to
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the equations used in statistical regression analysis. In this section, a statistical regression

analysis approach is taken.

It is known that for a process that has a multivariate Gaussian distribution the Linear

Predictor (LP) is the best predictor[Chr91]. Since the Poisson or telephone tra�c distri-

bution looks like a Gaussian for large tra�c levels, and the collected tra�c data shows no

tra�c being blocked which would cause the Gaussian property to be lost, and the moving

average operation used to calculate occupancy from sampled telephone tra�c would not

cause the Gaussian property to be lost, it is not surprising that the linear predictor did

well. The other nonlinear methods can only give small percentage improvements.

9.7.3 Training a Linear Predictor

The procedure for training a linear predictor to minimize error on the training set in a

least squared sense is well known and involves the calculation of the pseudo-inverse matrix.

To �nd the LP weights, a matrix equation can be written for the residual errors ri of an

approximate solution of the prediction problem in terms of the occupancy observations yi

as follows: 2
666666664
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...

r1500
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777777775
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2
666666664
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y1507

3
777777775

(9.3)

or in short,

r = Aw � b (9.4)

Then rT r (the total square residual error) is

rT r = (Aw � b)T (Aw � b) (9.5)

Now, di�erentiating rT r with respect to w and setting the result to zero to minimize the

error with respect to the weight vector w gives

ATAw = AT b (9.6)

and hence

w = (ATA)�1(AT b) (9.7)

Thus the LP coe�cients can be obtained by a simple 6x6 matrix inversion.
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9.8 Non-Linear Predictor

Non-linear prediction allows the use of yiyj cross-product terms in the A matrix of Sec-

tion 9.7. For example:

ŷ7 =
6X

i=1

wiyi +
6X

i=1

6X
j=i

wijyiyj (9.8)

Taking a y6y6 cross-product as an example, residual errors ri now become:
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y1 y2 : : : y6 y6y6
y2 y3 : : : y7 y7y7
y3 y4 : : : y8 y8y8
y4 y5 : : : y9 y9y9
...

...
. . .

...
...

y1500 y1501 : : : y1506 y1506y1506

3
777777775

2
6664
w1

w2
...

w7

3
7775�

2
666666664

y7
y8
y9
y10
...

y1507

3
777777775

(9.9)

or

r = Aw � b (9.10)

As in Section 9.7, matrix inversion is used to give the predictor coe�cients:

w = (ATA)�1(AT b) (9.11)

Thus the LP coe�cients can be obtained by a simple 7x7 matrix inversion.

This method is also known as polynomial regression [Ros87]. It is one of many non-

linear techniques studied in this chapter. It shares with the other techniques a non-

parsimony of parameters. In other words, for N inputs, there are O(N2) possible second

order crossproducts and O(N3) possible third order cross products. The more parameters

in the model, the more data that is necessary to correctly estimate them. If not enough

data is available the generalization results will not be good.

A slight improvement in prediction performance is obtained. Trial and error (see

Table 9.1) shows that the best results are obtained with pure squares of the input terms.

Overall results are given in Section 9.16 on page 104.

9.9 Neural Network

Comparisons of neural networks and linear predictors show that neural network sometimes

can give better results [TdAF91, SP90]. However the data sets used are not particularly

long, so the statistical signi�cance of these comparisons may be questionable.
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Error Crossproduct Terms

0.016283 y4y4 y5y5 y6y6 y4y5 y5y6
0.016256 y5y5 y6y6 y5y6
0.016215 Standard Linear Predictor

0.016190 y4y5 y5y6
0.016188 y5y6 y6y6
0.016187 y1y1 y2y2 y3y3 y4y4 y5y5 y6y6
0.016182 y5y5 y6y6
0.016172 y6y5
0.016169 y4y4 y5y5 y6y6
0.016167 y6y6

Table 9.1: Scaled RMS Prediction Error for Various Cross-product Terms

Number of Hidden Units Error

12 0.0191531

10 0.0191281

6 0.0191008

4 0.0189924

3 0.0194110

Table 9.2: Neural Network Test Set Prediction Error for Varying Numbers of Hidden Units

Moody in [UM91] gives learning limits for neural networks. See Section 9.11 for some

details. A key point in his paper is that too many hidden units combined with a low

value for weight regularization will produce an increase in generalization error. Weight

regularization is the step of adding an error term to the function to be learned. This error

term penalizes neural networks that have large weight values, or non-smooth outputs. The

aim is to avoid learning that noise in the training data set. From Moody's work it can be

deduced that there is an optimum number of hidden units for a given learning problem.

In these studies, a feed-forward neural network with a single hidden layer is used.

Quickprop[Fah88] is used for training as it has faster convergence than standard back-

prop and is freely available on the Internet. For the neural network, trial and error shows

that four hidden units and a linear output unit gives best results (See Table 9.2). The

linear output unit is used to aid function �tting. This architecture is �xed prior to training.

See Section 9.16 on page 104 for results.

A plot of hidden unit activations gives valuable insight into the features of the data

set. There are four hidden units. One of the hidden units reacts strongly to the overall

tra�c level. One of the units reacts strongly to rate of change of tra�c level while the
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Figure 9.6: Recurrent Neural Network (Cell Threshold Weights not Shown)

other two reacts strongly to the rate of rate of change of tra�c level. Examples of two

of the plots are given in Figures 9.4 and 9.5. It is possible that the neural network is

constructing a Taylor Series of the function of be approximated.

9.10 Recurrent Neural Networks

Recurrent neural networks allow the use of feedback in addition to feedforward connections

[WZ89, QSM92, Pin89, Pea89]. In this way, the network retains some state information be-

tween the presentation of examples. Recurrent neural networks are more di�cult to train,

but some successes have been reported for the time series prediction problem [CMA94].

The architecture of the recurrent neural network is somewhat di�erent to the archi-

tecture of the other models in this chapter. Instead of 6 inputs, there is only one (See

Figure 9.6). Recurrent neural networks are assumed to use their internal hidden units to

hold state information, similar to the way �nite state automata work. So there should be

less need to present the previous inputs at the same time as the present input. Instead

the recurrent neural network should learn the input features that are signi�cant, and store

some representation of these states in the hidden units to aid in prediction.

Since it is assumed that the previous six examples contain all the necessary information

for making a prediction, this state information may not buy us any additional prediction

power. See Section 9.15 for details on how time of day information can be more easily

incorporated in the prediction process.
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Using a recurrent neural network on the long data set, with one input, one output, and

a variable number of hidden units, and using the training techniques described in [WZ89],

a scaled prediction error of 13952 is the best that could be achieved, which is worse than

the performance obtained by the linear predictor. These results suggest that the function

space of this recurrent neural network is not rich enough to model the expected value

function that needs to be approximated by the time series predictor.

9.11 Learning Limits for Neural Networks

J. E. Moody carries out an analysis of generalization and regularization in non-linear

learning systems[UM91].

Assume a set of 2n real valued input/output data pairs are given and a function to

�t the data is to be estimated. The data is split equally into a test set and a training

set. The noise is i.i.d. with mean zero and �nite variance �2. The noise is not necessarily

Gaussian.

For a linear predictor, references are given to the following result for the MSE etest:

E(etest) � E(etrain) + 2�2
p

n
(9.12)

where p is the number of parameters (weights) being estimated.

For a neural network, a new result correct to second order is given:

E(etest) � E(etrain) + 2�2
peff

n
(9.13)

where peff is a complicated function of various Jacobians. However for a locally linear

model, peff is a decreasing function of �, the weight decay parameter for the neural

network with peff (� = 0) = p. The form of Equation 9.13 suggests that (i) there may

be a trade o� between having too many hidden units which will cause the second term in

equation 9.13 to rise or too few hidden units which will cause the �rst term in equation 9.13

to rise and (ii) given enough data, there will be an arbitrarily small di�erence between

test set performance and training set performance.

9.12 Local Approximation

Another name for the Local Approximation technique might be \History will Repeat."

The idea is straightforward. A training set and a test set are given. To carry out a
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prediction for any particular test set example, �nd examples in the training set which

most closely resemble it. Then train a linear predictor on that subset of the training set

and use it for prediction. This procedure is repeated for each example in the test set.

The algorithm is more precisely speci�ed as follows:

Given:

S0 , a training set consisting of n0 examples,

S1 , a test set consisting of n1 examples,

each training set example is of the form fy01; y
0

2; y
0

3; y
0

4; y
0

5; y
0

6; y
0

7g. Each test set example is

of the form fy1; y2; y3; y4; y5; y6; y7g where y7 is to be predicted from y1 : : : y6.

A forecast is carried out for each of the n1 examples based on a model derived from the

training data S0. Instead of using a single model for all the test examples, as is usually the

case, a di�erent model is derived for each test example. The model is a linear predictor

which is derived as follows. Choose a neighborhood Na < n0. Pick from the training set

the Na examples which minimize the Euclidean distance d, where

d =

vuut 6X
i=1

(yi � y0i)
2 (9.14)

Here y0 indicates a number from the training set, and y indicates the current example

from the test set.

Finding these examples can be done in one pass through the training set and a linear

predictor trained using only those examples, as detailed in Section 9.7.

Figure 9.7 shows how the generalization error varies as the neighborhood, Na, for the

local approximation technique varies.

[FS87] reports excellent results for this method on chaotic series using a small neigh-

borhood and noise free measurements to a high precision.

The disadvantage of this method is that the most accurate predictions require keeping

on-line a large number of training examples. In this case, if tra�c spikes occur infrequently,

a large volume of data is needed for each trunk route to be sure that the spike is captured.

In contrast, the neural network model is more attractive, requiring a much smaller amount

of information to be stored (i.e. the weights) to characterize the function to be estimated.
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Figure 9.7: Minimum Error for Local Approximation

9.13 Hidden Markov Model

Hidden Markov models (HMMs) are popular for word classi�cation in automatic speech

recognition[LRS83, RLS83].

The HMM is de�ned by a set of states, S, and two matrices Aij and Boi. Aij is the

probability of a transition to state i from state j, and Boi is the probability of observing

o given that you are in state i. This is illustrated in Fig. 9.9. The Aij matrix gives rise to

the Markov in the name, since the next state depends on the present state as in a regular

�rst-order Markov model. The Boi matrix gives rise to the Hidden in the name, since the

states are not directly observable.

The Baum-Welsh algorithm can be used to learn the A and B matrices[LRS83]. A

di�erent algorithm, the Baum Backward-Forward algorithm can be used to derive the

probabilities of the system states given the observations [LRS83]. In this way, the HMM

can be used as a classi�er.

In this case, a HMM is used to classify the trunk group as being in one of two

modes/states: (i) tra�c varying a lot as during a tra�c spike or (ii) tra�c behaving
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normally. This classi�cation is used to choose between two linear predictors for training

purposes as shown in Fig. 9.10. For testing purposes, as shown in Fig. 9.11, the HMM

output probability for state 1 (p1) is used to combine the estimates from the two linear

predictors (LPi) to yield the occupancy estimate ŷ as follows:

ŷ = p1 � LP1 + (1:0� p1) � LP2 (9.15)

The A-matrix is learned from the data using the Baum-Welsh algorithm. The obser-

vation, o(n), used as input to the HMM model is the prediction error from a 5-input linear

predictor in predicting the most recent occupancy reading.

A plot of the probability of tra�c not being \normal" tra�c is given in Figure 9.8.

Compare this to the original time series shown in Figure 9.1. The tra�c spike close to

example 60 can be clearly seen. Also the decline in tra�c close to example 25 can be

clearly seen.

For the state transition probability matrix, A:

�
a11 a12
a21 a22

�
(9.16)
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Figure 9.10: Training a Dual Linear Predictor

Then for time-step n:

pn1 = p(1jon)� (a11p
n�1
1 + a12p

n�1
2 ) (9.17)

pn2 = p(2jon)� (a21p
n�1
1 + a22p

n�1
2 ) (9.18)

where pni is the estimate of the relative probability of being in state i at timestep n.

An assumption of a Gaussian distribution of prediction error is used to generate the

output matrix, B. For the output matrix:

on = yn � ŷn (9.19)

ŷn = w5 � yn�1 + w4 � yn�2 + : : :+ w1 � yn�5 (9.20)

p(1jon) = 0:9 exp

 
�
o2n
�2

!
(9.21)

p(2jon) = 1:0� p(1jon) (9.22)

The results (see Table 9.4 on page 103 and Table 9.5 on page 103) indicate that the

Hidden Markov Model is able to improve the robustness of the linear predictor by detecting

tra�c spikes in the input data and training a second linear predictor on the time series

that follow tra�c spikes. This gives an improvement over the standard linear predictor

but is not the best overall method.
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9.14 Log Transformation

A log transformation of the data is carried out, prior to training a linear predictor. This is

the best prediction method for the short data set. It is believed that the reason that it is

so good is that it tends to give the same output as a linear predictor when the tra�c levels

are about constant. This is because the log predictor has approximately the same weights

as the linear predictor, as shown in Figure 9.12 and averaging in \log space" is the same

as averaging in linear space if the points being averaged are close together. Figure 9.13

highlights the fact that there is little di�erence between the log predictor and the linear

predictor for most of the predictions.

On the other hand, in the event of spikes (as occurs in a small part of the data set)

the log predictor gives much better prediction results. (See Figure 9.14). This may re
ect

the geometric averaging process as being better than the arithmetic averaging process

following a spike. Figure 9.14 highlights the fact that there is a large di�erence between

the log predictor and the linear predictor following tra�c spikes.

It might be argued that heteroskedasticity is the cause of the log predictors success.

Heteroskedasticity is the change of variance of the occupancy statistic as the tra�c level

rises. This may interfere with the calculation of the coe�cients of the LP. A possible

solution suggested in [Ros87] is to take a log transformation of the data to 
atten the

variance as is done here. However heteroskedasticity can be ruled out as a cause of the log

predictors success because in this event, a weighted least squares predictor should obtain

the same improvements as the log predictor, and this is found not to be the case.

Weighted least squares is a means to avoid the bias introduced by heteroskedasticity.

The weighted least squares experiment trains a linear predictor but weighs each input
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pattern vector according to the average level of tra�c present. The details of the algorithm

used and the best weights to use are given in [Ros87]. In this case, the best results are

obtained with a weighting function that linearly decreases from 2.0 to 1.0 as the tra�c

level rose from 0 to 100% occupancy.

9.15 Including a daily pro�le

Using the longer data set, it is possible to generate a daily pro�le for the trunk group.

The traditional approach by utility companies is to classify the day into one of:

� Saturday

� Sunday or holiday

� Day after Sunday or holiday

� Weekday

and then use historical records to derive a pro�le of each day. This pro�le is fed into the

predictor to aid in prediction. The key point is that part of the daily variation that the

occupancy statistic follows every day is deterministic.
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Method Error

Standard LP 13112

Indexed LP 12427

Table 9.3: Scaled RMS Prediction Error using Daily Pro�le

Method Error

Using last sample 18308

Using linear predictor 16215

Using non-linear prediction 16167

Using neural network 16119

Using local approximation 16085

Using Hidden Markov Model 16081

Using log transformation 16033

Table 9.4: Scaled RMS Prediction Error for Short Data Set

Best results are obtained by dividing the data into each of the four day types, carrying

out a 5 point moving average operation to smooth the data, calculating the pro�le for each

day type by averaging the available data for each data period belonging to that day type

and �nally using the �rst order di�erences of the relevant pro�le as an extra input to the

linear predictor. Carrying out all of these operations resulted in a 5% improvement in the

prediction error, as shown in Table 9.3. Because of the 5 point moving average operation,

the data set in this section is slightly di�erent from the dataset in earlier sections.

In this implementation, no account is taken of holidays. Instead holidays are treated

as normal work-days. It is likely that treating holidays the same as Sundays as suggested

by [HY91] would slightly improve the results.

Method Error

Using last sample 13487

Using linear predictor 13130

Using log transformation 13116

Using non-linear predictor 13061

Using Hidden Markov Model 13061

Using neural network 13054

Using local approximation 13011

Table 9.5: Scaled RMS Prediction Error for Long Data Set
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9.16 Results

The results for the short data set are shown in Table 9.4. The results for the long data

set are shown in Table 9.5. Neural networks and local approximation techniques do well

on the long data set.

All methods predict the next observation based on the previous 6 observations. The

linear predictor can be taken as the baseline performance to beat. Error is RMS prediction

error multiplied by 10,000, with a di�erence of 100 for the short data set and 10 for the

long data set being signi�cant. In each case, 50-fold cross-validation is used.

9.17 Conclusions

The presence of occasional spikes in telephone tra�c occupancy means that it is possible

to do better than use a linear predictor for this data set.

The general nonlinear methods of neural networks and local approximation did well

and can be expected to be near optimal as the data set size increases, as discussed in

Section 9.11. Some progress in understanding the role of each hidden unit in the neural

network predictor is obtained, as discussed in Section 9.9.

The HMM has a side e�ect of giving a classi�cation of the state of the trunk group.

This could be useful in a network management context.

Inclusion of a daily pro�le as one of the inputs, as described in Section 9.15, results in

a 5% improvement in prediction capability. It is expected that there exists a fundamental

limit to prediction implied by the random nature of call arrivals. This is explored in

Chapter 10.



105

Chapter 10

Model of the Occupancy Process

10.1 Introduction

Figure 9.1 in the previous chapter indicates that occupancy depends on time of day. In

this chapter the dependency of occupancy on the day of the week is examined. A model of

weekday occupancy will be developed that provides a good visual �t with observed values.

Clearly, occupancy has some randomness due to the random nature of call arrivals.

This random nature must be included in the model. The strategy pursued in this chapter

is to �nd a daily pro�le, add a loading factor to account for the observed variability,

simulate the daily pro�le with the added loading factor and compare it visually with the

observed occupancy values. This is similar to the time series models developed by utility

companies [HY91, PHK92].

A model of occupancy would have some bene�ts:

� It would indicate the limits of predictability. In Chapter 9 various methods used

to predict trunk group occupancy are compared. With a model of the occupancy

process, it is now possible to investigate how close each method comes to the fun-

damental bound imposed by the random nature of call arrival. Section 10.7 gives

details.

� It would indicate the presence of spikes. With a model of occupancy, it is much easier

to detect a departure from normal operations. It also becomes possible to attach

a statistical signi�cance to such departure. If properly presented, this information

could be very valuable to the network tra�c manager.

10.2 Day of Week Dependence

Looking at the long data set from Chapter 9, it is possible to check whether occupancy

varies from day to day. This is done in Table 10.1. Clearly there is less tra�c on Saturdays

and Sundays than on weekdays. The most tra�c is to be seen on a Monday, when business

people return to business after a weekend. The tra�c pro�le on Tuesday, Wednesday, and
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Day 08:00 10:00 12:00 14:00 20:00

Mon 12:43� 3:32 37:87� 7:84 20:95� 4:68 25:00� 3:82 13:45� 3:13

Tue 11:08� 2:71 29:79� 4:44 18:41� 2:53 24:61� 2:79 12:15� 2:55

Wed 11:22� 2:63 26:56� 3:31 17:71� 2:90 22:44� 2:78 10:84� 2:70

Thu 11:23� 3:11 26:85� 8:69 17:62� 2:72 23:00� 4:40 13:53� 6:08

Fri 10:29� 3:02 26:98� 13:10 17:69� 4:31 21:66� 6:91 10:41� 2:77

Sat 3:89� 1:30 7:32� 1:35 7:55� 1:91 7:01� 2:12 6:59� 1:99

Sun 2:31� 0:88 4:61� 0:83 5:53� 1:26 5:04� 0:99 6:34� 1:52

Table 10.1: Occupancy Mean and Standard Deviation for Di�erent Days and Times

Thursday seems to be similar. Based on this, the remainder of the chapter contains a

description of the development of a model for occupancy on these days.

The dataset showed some anomalies on Thursday November 25 and Friday November

26, the Thanksgiving holidays. There is also less tra�c than usual during the two weeks

when many people take their Christmas vacations. To account for these holiday periods,

the period from Thursday November 25th to Tuesday November 30th and the period from

Saturday December 25th to Thursday January 6th are excluded from the data set. A

complete model would include special cases for Thanksgiving and Christmas vacations.

In the past, the Monday after Thanksgiving has been found to be the busiest day of the

year for telephone tra�c.

10.3 Tuesday to Thursday Scatter Plot

Figures 10.1, 10.2, 10.3 and 10.4 show scatter plots of a seven point moving average of

occupancy on Tuesdays, Wednesdays, Thursdays and all three days respectively. The seven

point moving average is chosen to aid the comparison of the daily pro�les, by smoothing

the random 
uctuations in the tra�c. One obvious tra�c spike can be seen in Figure 10.3

close to data-point number 250. The similarity of the tra�c pro�les is remarkable.

10.4 Tra�c Pro�le

Figure 10.5 shows the daily tra�c pro�le. It is derived by simply averaging all the available

readings for each data period.
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Figure 10.1: Tuesday Occupancy Moving Average
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Figure 10.2: Wednesday Occupancy Moving Average
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Figure 10.3: Thursday Occupancy Moving Average
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Figure 10.4: Tuesday to Thursday Occupancy Moving Average



109

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

A
ve

ra
ge

 O
cc

up
an

cy

Five Minute Period Number(0 - 287)

Figure 10.5: Daily Tra�c Pro�le (Tue-Thu)

10.5 Characterizing the Variance

With a large number of trunks, the theoretical tra�c distribution will be close to a Poisson

distribution, with mean and variance equal to the o�ered tra�c a. In other words, the

tra�c variance is proportional to the mean tra�c level. The moving average operations

used to calculate occupancy from tra�c samples and to smooth the occupancy readings

will not cause this property to be lost. If the applied tra�c level is constant then one

would expect to see a variance that is proportional to the tra�c level. A plot of the bounds

suggested by such a variance is given in Figure 10.6.

Clearly this can be improved upon. The �t is good at low tra�c levels but is poor

at higher tra�c levels. If it is postulated that a loading factor that is proportional to

the applied tra�c is added to the pro�le, then making the variance proportional to tra�c

raised to a higher exponent than 1.0 may be better. Figure 10.7 shows the e�ect of bounds

suggested by a variance that is proportional to tra�c raised to the power of 1.5. The �t

is good for all data periods except the lunch hour.
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Figure 10.6: Tra�c Upper and Lower Bounds with Variance(1)
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Figure 10.7: Tra�c Upper and Lower Bounds with Variance(2)
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Figure 10.8: Simulation using Occupancy Model

10.6 Model

This gives rise to the proposed occupancy model. The model uses the tra�c pro�le from

the data set, adds a loading factor for the day, which is a multiplicative factor of the form

M = (1 + �z) (10.1)

where z is a normal random variable with mean 0 and variance 1, and � is a loading factor.

Good results are obtained with � equal to 0.13. Finally this loading factor is removed

during lunch hour to agree with the reduced variance observed during this time.

Thus, to simulate occupancy using this model, the following steps are needed:

1. Decide on day type.

2. Use the observed pro�le for that day type.

3. Scale the pro�le by a multiplicative factor M given in equation 10.1.

4. Simulate call arrivals according to that pro�le.

The visual agreement between the observed data in Figure 10.7 and the simulation of

the model in Figure 10.8 is good.
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Data Period 09:25 09:30 09:35 09:40 09:45 09:50 09:55

Occupancy 18.16 18.91 19.50 20.15 20.82 21.32 22.14

Realization 18.00 16.00 16.00 18.00 18.00 18.00

Table 10.2: Occupancy Pro�le and One Realization Prior to 09:55

Occupancy

Linear Predictor 17.8151

Neural Network 17.9051

Local Approximation 17.9715

Indexed Linear Predictor 19.1335

Simulated 19.4300

Table 10.3: Predictions for 9:55 Occupancy by Various Methods

Although this trunk group carries over
ow tra�c, for simulation purposes it is treated

as �rst routed tra�c without appreciable error.

10.7 Limits of Prediction

It was mentioned in the introduction that one of the bene�ts of a model of the occupancy

process would be to �nd the limits of predictability of occupancy. It is possible to use the

model of occupancy to simulate a large number of future evolutions for occupancy from

a given point in time. Since each of these evolutions is equally likely, this will give an

indication of the limits of predictability.

An example of this procedure for the time period ending in 9:55 (period 119) is shown

in Table 10.2, and the results for the various prediction methods are shown in Table 10.3.

It is possible to carry out 10000 evolutions of the realization shown in Table 10.2. Based

on these evolutions, the best possible prediction of the next tra�c sample at 09:55 would

be 19:43� 0:84. Table 10.3 shows how close each of the prediction methods is able to get

to this best result.

Clearly the use of indexing gives a major improvement over the other methods, coming

closest to the expected value of the next occupancy reading.

The important lesson to be learned is that there is a certain randomness in call arrivals

that it is impossible to predict. In this case, it is the standard deviation �gure of 0.84

above. Unless one tries to model every subscriber in the network, it would be impossible

to reduce the expected prediction error for the 09:55 prediction below this, assuming the
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model of the occupancy process is accurate.

10.8 Simulated Dataset

It is possible to carry this technique a bit further. It is possible to generate a simulated

dataset using the model of the occupancy process developed in this chapter. The di�erence

between the simulated dataset and a real dataset is that for each future value of occupancy

that is to be estimated, a large number of evolutions can be carried out, in order to estimate

the expected value of the occupancy reading, and the standard deviation of the occupancy

reading.

This technique is used to generate a dataset of 3000 examples of weekday occupancy.

For each of the examples, 1000 evolutions are carried out. In this way, the expected

value �i of the future reading of occupancy and the minimum prediction error �i, that

is, the standard deviation of future reading of occupancy, are known for each of the 3000

examples in the dataset.

The following equation is used to calculate the error associated with the di�erent

prediction methods, Em. Here ŷi is the predicted value of the test set for example i for

this prediction method, found using 50-fold cross-validation on the 3000-element dataset.

Em =

vuut3000X
i=0

(�2i + e2i ) (10.2)

with the error, ei, being de�ned as:

ei = ŷi � �i (10.3)

The error, Eopt, associated with a hypothetical optimum prediction method is simply:

Eopt =

vuut3000X
i=0

�2i (10.4)

This results for the di�erent prediction methods are reported in Table 10.4. The results

are scaled by 10,000 to get rid of decimal points. The indexed methods use an extra input

which is the �rst order di�erence of the daily pro�le for that particular time of day. This

gives 7 inputs instead of the usual six.



114

Error

Last Sample 8281

Linear Predictor 7889

Local Approximation 7416

Indexed Linear Predictor 7030

Indexed Local Approximation 6997

Optimum 5782

Table 10.4: Scaled RMS Prediction Error on Simulated Dataset

The local approximation method gives a sizeable gain over a linear predictor. However

the indexed local approximation method is the best method, coming close to the perfor-

mance given by the optimum predictor for this model. The indexed linear predictor is not

a lot worse.

The �gure of 6997 in Table 10.4 seems to be the smallest �gure obtainable, using the

given inputs. This is indicated by the fact that the training error from a neural network

with the number of hidden units varying from 1 to 10 can show no improvement.

The results in Table 10.4 give an indication of how close to the limit of predictability

the various prediction methods can come.

10.9 E�ect of Dataset Size

Equation 9.12 seems to suggest that as the dataset size increases, the RMS error should

decrease according to the formula:

E(etest) � E(etrain) + 2�2
p

n
(10.5)

where p is the number of parameters (weights) being estimated.

It is possible to test the e�ect of using a smaller dataset size by simply breaking the

3000 element data set into n groups of size 3000=n. For the indexed linear predictor the

results are given in Figure 10.9. A good �t is obtained using the 1=n term, however it is

clear that the �t could be improved. A better �t includes 1=(n2). The �tting formula is:

E(etest) � 0:701499 +
4:32672

n
+
43:7092

n2
(10.6)

This would indicate that the minimum test error for very large n would be 0.7015. It

would also indicate that a 3000 point dataset would be large enough to come very close
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Figure 10.9: Decrease in Error for Indexed Linear Predictor as Dataset Size Increases

to this minimum test error. In fact, from the graph, it is apparent that dataset sizes of

greater than 500 points are su�cient for coming close to the minimum error.

10.10 Conclusions

The model of occupancy proposed in this chapter is similar to time series models of power

load put forward by utility companies. The aim of the model is to explicitly incorporate

all of the sources of variation in the occupancy readings. There are a number of sources

of variation in the occupancy readings. The occupancy readings depend on:

� Day of Week

� Time of Day

� A Loading Factor

� Exact Arrival Instants of Calls

The model of occupancy that is proposed includes all of these sources of variation.

It successfully describes the observed occupancy during weekdays for one trunk group.



116

It has been used to investigate the limits of predictability of trunk group occupancy. A

model based approach should also prove useful for the detection of tra�c spikes.
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Chapter 11

Conclusions

11.1 Introduction

In this thesis, some of the issues that arise from considering dynamic routing based on

5 minute data are examined. It is foreseeable in the future that all telephone networks

automatically adjust the routing tables in the switches in the network to compensate

for changing network conditions and provide the maximum of service quality with the

minimum of equipment.

11.2 Dynamic Routing

In Chapter 3, simulations are carried out to test the bene�ts of dynamic routing based

on 5 minute data. The factor with the largest in
uence seems to be network connectivity.

With a typical network connectivity of 0.25, the equipment savings from implementing

dynamic routing are approximately 2%. In a typical metropolitan network, with higher

connectivity, the equipment savings may be of the order of 3.5%.

The bene�t of dynamic routing are also seen to decrease as trunk group sizes increase.

This is explained qualitatively as a consequence of larger trunk groups containing relatively

fewer free trunks for a given level of blocking. This means that there is less spare capacity

for the dynamic routing algorithm to use.

11.3 Fixed Point Models

A fast method for the calculation of network blocking probabilities is described in Chap-

ter 4. For symmetric networks and simple routing schemes, FPMs are instantaneous.

However two drawbacks are apparent.

First, the use of FPMs usually implies an assumption of route independence. Thus

FPM blocking results are approximate. Without resorting to simulation, it is di�cult to

write down an expression for the error introduced by the �xed point method.

Second, for non-symmetric networks, the run-time for the FPM will be proportional to

the number of routes to be modeled, which rises according to O(N2) whereN is the number
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of network nodes. Thus runtimes can rise very quickly as the network size increases.

Despite these limitations, FPMs have been useful for calculating estimates of network

blocking associated with various routing techniques.

11.4 Network Stability

In Chapter 5, simulations and analysis are used to examine the dynamics of dynamic

routing, when the routing information experiences a delay in feedback. The lesson is that

tight control of the feedback time of routing information is necessary in order to avoid

network instability.

11.5 Tra�c Patterns

A model-based approach to the detection of normal and abnormal tra�c patterns is put

forward in Chapter 7. An example of the use of this approach to characterize a stormy

day in Los Angeles as being an abnormal day with a 99.7% certainty level is given. It

is seen that the �rst step in detecting departures from normal operation has to be the

formulation of a model that describes normal operation.

11.6 Learning Techniques

In Chapter 9 the application of many di�erent learning techniques to time series prediction

of telephone tra�c occupancy is considered. It emerges that local approximation and

neural networks are two techniques that generalize well. Using a long data set with

about 18000 elements, it is possible to be con�dent in the comparative performance of the

di�erent prediction techniques.

It should be noted that in network management, function approximation is important.

There are many functions that would be di�cult to solve for analytically, that can be

obtained by �tting a function to observed network data. For example, the optimum trunk

reservation parameters are considered in Chapter 8.

The linear predictor and the neural network are good function approximators and

di�cult to beat. The linear predictor has advantages over the neural network in that it

is quick to train and there is little or no danger of over�tting. On the other hand, the
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neural network can provide a better �t for functions that are a non-linear function of their

inputs.

Cross-validation is the key technique for testing learning ability. The cross-validation

technique allows maximum use of the dataset, by dividing it into many small test sets. In

this way, the signi�cance of the di�erence in performance between the various prediction

methods can be judged. For this reason, cross-validation is the perfect method for testing

generalization capability.

Using the model of the occupancy process in Chapter 10, it is possible to estimate

that the linear predictor came to within 36% of optimal prediction, and that the local

approximation technique came to within 28% of optimal prediction. Both of these �gures

assume that the model of the occupancy process is an accurate description of the process.

As an engineering principle, it is useful to know what the bounds of performance are for

a particular problem to see whether it is worthwhile to improve the standard techniques

to come closer to those bounds.

The presence of spikes in the tra�c data mean that methods for robust time series

prediction must be considered. The HMM technique described in Chapter 9 automatically

detects when a time series is going out of bounds, and stops training the linear predictor

when this happens. This results in good prediction performance. Alternatively a model

based approach allows one to simulate the evolution of occupancy over the course of a

day, and detect any signi�cant departures from normal operations.

11.7 Future Work

The following are some ideas for future work. In all cases, the future work would require

further data collection steps, and hence is not included in this thesis.

More Fine Grained Tra�c Patterns In Chapter 7 the work on tra�c patterns is

based on observing network exceptions and controls placed in the network. This

is a very coarse grained view of what is happening in the network. If instead, daily

tra�c pro�les are available for all the trunk groups, then it would be possible to

study smaller departures from normal operations. Much more information would be

available to support tra�c pattern classi�cation.
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Inputs for Trunk Reservation In Chapter 8 the inputs for the trunk reservation study

are chosen in an ad hoc fashion. The model of trunk reservation as a bet should

lead to the determination of what inputs are necessary and su�cient to make a good

trunk reservation decision. In carrying out any prediction operation, the resulting

prediction is only as good as the input information supplied for the prediction.

Occupancy Model for Di�erent Types of Trunk Groups In Chapter 10 the occu-

pancy model proposed is a good �t for the trunk group for which data had been

collected. It remains to be seen whether the same model will be equally good for

other trunk groups carrying di�erent tra�c mixes.

Stability of Trunk Reservation In Chapter 8 the trunk reservation policy is learned by

neural networks to provide reduced network blocking. In this thesis, the question of

whether such a policy of learning the network control algorithm can ever be unstable

is not answered. Intuitively, one would suspect that the policy can be unstable if the

learning rate is such that the neural network weights can vary a lot with each new

call arriving. There may be a limit on the learning rate, below which the control

algorithm is always stable. This should be an interesting area for further study.
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Appendix A

Network Operations Analyzer and

Assistant (NOAA): A Real-Time Tra�c

Rerouting Expert System

A.1 Introduction

The research in this thesis was inspired by a system called NOAA (Network Operations

Analyzer and Assistant). NOAA is a set of programs that runs in the Paci�c Bell Network

Management Center in Sherman Oaks. The objective of NOAA is to duplicate the actions

of the network management sta� in responding to emergencies and putting controls into

the network.

Typical emergencies may be:

� Random overloads of trunk groups.

� Focussed overloads caused by phone-ins.

� Unusual calling patterns as may occur on Mother's day.

� Earthquakes.

� Other major events.

In each of these cases, the network manager must diagnose what the problem is, based

on observable symptoms and place controls in the network to reduce the impact of the

network event.

The NOAA project was started in September 1990 as a joint project between Caltech

and Paci�c Bell to develop an expert system to aid in real-time network management. It

has since been developed to the extent that it is placing controls in the Southern California

telephone network without any manual intervention, and has become a product currently

o�ered for sale to other regional Bell telephone companies.

A.1.1 Network Concepts

In order to gain some appreciation of the network management tasks, one must have a

description of the network to be managed. The Paci�c Bell Southern Californian telephone
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Figure A.1: Paci�c Bell Southern California Telephone Network

network provides service to at least 1 million subscribers. For administrative and legal

purposes it is divided in Local Access and Transport Areas (LATAs) and the network

management center in Sherman Oaks manages LATAs 5 and 6. Geographically LATAs 5

and 6 extend to San Diego in the south and include all of the Los Angeles urban area.

The network is hierarchical. Endo�ces are the exchanges that serve customers and

tandems are the exchanges used for tra�c between endo�ces that are not directly con-

nected. This is illustrated in Figure A.1. For Southern California, there are 6 tandems to

be managed and over 200 endo�ces. Each endo�ce is connected to one or more tandems

and the tandems are fully interconnected.

There are two types of trunk groups. High usage trunk groups are dimensioned to be

lossy, i.e. during the busy hour they are not guaranteed to have enough capacity to carry

all the o�ered tra�c. Tra�c will therefore over
ow on the Final trunk groups which are

dimensioned to provide enough trunks so that calls are rarely blocked. In general there

will be a �nal route between each endo�ce and its parent tandem. It is these �nal routes

that provide the backbone of the network. The �nal routes are therefore closely monitored

by the network managers.

A.1.2 Network Management Concepts

Network management sta� may reroute tra�c elsewhere (expansive controls) or cut the

tra�c o� at its source (restrictive controls).

Expansive controls are appropriate for a single overload situation where due to sta-
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tistical 
uctuations in the o�ered tra�c, a trunk group does not have enough capacity

to handle its o�ered load. Typical expansive controls might be (i) orr (over
ow reroute)

which reroutes calls to another trunk group after they have over
owed or (ii) irr (immedi-

ate reroute) which reroutes a certain percentage of calls before they even try the \problem

route." Other controls may have to be put in at the same time as the main control to

avoid routing loops.

Irr controls provide an advantage when there is a two way trunk group and the o�ce

at the far end cannot e�ect controls. By using an irr, enough tra�c can be lifted to

prevent over
ow at either end.

Restrictive controls are appropriate for call-in conditions, where most of the tra�c has

a low probability of completion, but its presence is interfering with the normal network

operations. This tra�c is characterized by a large number of call attempts per trunk and

low holding time. Currently NOAA handles expansive controls and restrictive controls to

a limited extent.

A.1.3 Netminder

Netminder is an AT&T product used in the Paci�c Bell network management computer

system. It provides a display to the network operators of the state of trunk groups in the

network. It highlights over
ow conditions on �nal trunk groups and alarm conditions in

the telephone exchanges.

Netminder information is polled from the o�ces in Southern California every 5 minutes

for trunk group data, and every thirty seconds for switch alarm data. Netminder stores this

information in its database. NOAA can then query this information using SQL database

interrogation commands. SQL is a database query language.

A.2 CUBE

CUBE is the Caltech / U S Geological Survey Broadcast of Earthquakes system. It

provides epicenter and magnitude information of any earthquake occurring in California.

Although CUBE only applies to California, the same type of system could conceivably

be used to access information about other types of natural disaster, such as the National

Hurricane Center's early warning system and tornado watch data.
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Indications of an earthquake are �rst received on sensors distributed throughout Cal-

ifornia. This data is relayed to Caltech in Pasadena, where it is processed to provide

epicenter location and magnitude information. Pager messages are then sent on the stan-

dard paging system to NOAA, and a data interface to the CUBE pager allows the message

to be read and processed by NOAA.

Earthquake information received in real-time is displayed on NOAA's map in the form

of a circle around the epicenter along with a numerical indication of the magnitude of

the quake on the Richter scale. The map interface allows the operator an immediate

identi�cation of quake location and magnitude as well as identi�cation of end-o�ces that

may be impacted by the quake.

A.3 Architecture of NOAA

The Architecture of NOAA is shown in Figure A.2. The Paci�c Bell network management

system is called Netminder. NOAA is connected over an Ethernet data link and appears

as an ordinary operators terminal to Netminder. NOAA runs on a Sun workstation under

UNIX.

A.4 Statistics

NOAA makes its diagnosis on the basis of available information about the trunk groups.

This information is available to NOAA in the form of counts of certain events for each

trunk group during a 5 minute period. These events are, for instance, (i) a trunk being

seized in order to carry a telephone call (ii) a seizure that is not successful i.e. over
ow

(iii) a survey of trunk occupancy at a given instant. On the basis of these counts, the

following standard statistics are calculated:

ACH Attempts per circuit per hour

CCH Connections per circuit per hour

OFL Percentage of attempts that over
owed

OCC Percentage of trunks occupied on average

HT Holding Time of Calls
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The 5 minute period is a compromise. The shorter the period between data collections,

the faster the response to any potential problems, but the larger the amount of information

to be processed, requiring more expensive hardware. The 5 minute period means that

problems can be cleared relatively rapidly.

Since a large amount of information is available, �ltering is carried out. First, excep-

tions on high usage routes are ignored and only �nal route data are examined. Second,

exceptions on special purpose �nal routes are ignored. For example, a trunk group for the

time announcement can be expected to have a short holding time. Thirdly over
ows are

treated as having higher priority than other exceptions, since an over
ow on a �nal may

represent lost tra�c.

A.5 Decisions

When an exception condition has been noted on a trunk route, there are many possible

explanations for it. Typically phone-ins to radio stations and TV stations may generate

excess call attempts. Facilities failures may mean that over
ow shoots up on related

trunk groups. Occasionally the data gathering may interfere with maintenance operations

and unreliable data is returned. Finally random over
ows can occur on individual trunk

groups.

For any reroutes, a search for spare capacity is carried out. If there is an over
ow

problem between A and B where A is an endo�ce and B is a tandem, then the program

�rst looks for capacity on other trunk groups going from A to B, and then carries out a

search for A to B via C possibilities. Here C has to be one of the 6 tandem exchanges,

because of the hierarchical nature of the network. The candidate reroutes are then sorted

according to available capacity and controls are suggested that make use of the minimum

number of reroutes that achieves the required capacity.

The rules used in the program are of three separate types:

� rules that indicate which exceptions can be safely ignored. For example over
ow on

high usage routes is ignored;

� rules that indicate which routes can be used as candidate reroutes;

� rules that map a suggested reroute into a list of controls to e�ect the reroutes. For

example, certain other routes may have to be �nalized �rst to prevent a round-robin
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DISREGARD ANY EXCEPTIONS ON TRUNK GROUP COMMON LANGUAGES (CLLIS)

ENDING WITH "MD" (EX: LSANCA02AMD; LSANFDRCCMD). EXCLUDE SAME

WHEN SEARCHING FOR VIA ROUTE CANDIDATES.

DISREGARD ANY EXCEPTIONS ON CLLIS INDICATING "PB" IN THE STATE

DESIGNATION (EX: OKLDPB0349T). EXCLUDE SAME WHEN SEARCHING FOR

VIA ROUTE CANDIDATES.

DISREGARD ANY EXCEPTIONS ON THE FOLLOWING HIGH VOLUME CALL-IN

CLLIS: HLWDCA01520, SNANCA01977, COTNCA1143A, SIMICA11629,

SNDGCA0157X

Table A.1: Typical Network Management Rules

situation, where two switches pass a call back and forward because of the network

routing rules.

Some of the above rules were already written down in operators handbooks. Others

were supplied by the network management sta�. Examples of the rules are given in

Table A.1.

A.6 Controls

It was mentioned above that there are many causes of exceptions on the trunk groups.

Similarly there are many possible controls that can be put in to improve the network

throughput. In general, controls can be divided into protective controls and expansive

controls [Fil90, Bel88].

Protective controls are used to cut down the amount of call attempts entering the

network. For example in the event of a phone-in, controls can be put into each endo�ce

to block call-attempts to that telephone number. Alternatively a certain percentage can

be let through. This limits the amount of congestion in the network. Clearly the calls

destined for a phone-in are bad tra�c as there is a high possibility of non completion, and

therefore they should be blocked at source and not rerouted.

On the other hand, expansive controls allow trunk groups that are normally separate

to share their capacity. If there is a single random overload, then expansive controls are

called for. Two alternatives here are over
ow rerouting, which reroutes over
ow tra�c

only, and an immediate reroute which puts all call attempts onto the alternative route
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�rst. Each is appropriate for certain cases. Finally spray rerouting is possible, whereby a

number of alternatives is given and each is tried for a given call.

A.7 Graphics Interface

A clear record of the actions that NOAA carried out was also essential to gaining user

acceptance. This was achieved through a well designed graphics interface. In this case, two

scrolling lists were provided. The �rst was a list of exceptions in the network, the second a

list of controls currently in the network. Beside each entry, NOAA's recommended action

was given in summary form. Verbose advice was available by selection of an exception

or control and pressing the \details" button. Color was used to supply an indication of

the severity of the exception or the recommended action for the control. For example,

a red lamp next to the control entry signi�ed that NOAA recommended a modi�cation,

whereas a yellow lamp next to the control entry indicated that NOAA recommended

removing the control. Exceptions were �ltered before being presented to the operator.

The aim was to give the operator an at-a-glance indication of the status of the network

and the recommendations that NOAA produced. A screen capture is shown in Figure A.3.
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Figure A.3: Graphical Interface for NOAA
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