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Autonomous RobotsAutonomous Robots
How to learn controllers – as opposed to hand crafted

• Learning – Adaptation- Reinforcement
• Explicit internal representations
• Environment models - Self models
• Model based predictive control
• Novelty detection
• Attention - Awareness
• Neural Networks - Genetic Algorithms
• Sensory processing
• Collective robotics - Swarm intelligence

Sony Dream Robot

Goodman Lab - CaltechEPFL “Shrimp” Robot



Robot ControllersRobot Controllers
• Animal and human brains evolved to control behavior in a 

changeable and partially knowable environment.

• The goal of the controller is to produce the agent’s next action.

• The agent uses sensory input, memory, goals, drives, to 
produce the correct action given the current state of the 
environment.

• There is only one action at a time.

• Incorrect or multiple actions are very obvious and can damage 
the robot quickly. (Parkinson’s, Huntington’s, Tourette’s)

• The action may change the environment.

• Good control requires the ability both to predict events, and to 
exploit those predictions.

• Controllers are layered in increasing levels of abstraction.

• The best such control systems known to engineers are 
adaptive model-based predictive controllers.



Controllers should be able to:Controllers should be able to:

• Learn models of the environment, the self, and of 
the interaction of the self with the environment.

• Adapt models automatically based on experience.

• Deal with novel situations automatically, and 
assimilate the new experience.

• Manipulate models internally to plan actions and 
goals.

• Make their internal models and reasoning visible in 
human terms.

• Be able to interact, model, and collaborate on tasks 
with other similar agents.



Generic Controller ArchitectureGeneric Controller Architecture

• The controller of the robot is a neural network with recurrent feedback, capable of forming 
internal representations of sensory information in the form of a neural state machine. 

• Sensory inputs (vision, sound, smell, etc) are fed into the controller, including feedback
signals from the motors and effectors.

• Controller outputs drive the locomotion and manipulators of the robot. 

• The neural controller learns to perform a task, using NN and GA techniques.

• Novel inputs that are unrecognized must be adaptively learned by the model.

• The model learns continuously over sequences of actions in time via reinforcement learning, 
supervised learning, or mimicing a human controller.

• The model continuously refines itself to improve its prediction accuracy.

• But - the internal model of the controller is implicit and therefore hidden from us.
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Understanding the ControllerUnderstanding the Controller
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Introduce a second recurrent 
neural network, separate from 
the first system, which learns the 
inverse relationship between the 
internal activity of the controller 
and the sensory input space.

• This mechanism will allow us to represent the hidden internal state of 
the controller in terms of the sensory inputs that correspond to that 
state.  

• Thus we may claim to know something of what the robot is thinking.

• We assume that the controller is learned first, and that, once this is 
learned and reasonably stable, the inverse can be learned.



InverseInverse--Predictor ControllerPredictor Controller
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• We now allow the 
inverse to be fed 
back into the 
controller via the 
switch.

• The controller then 
has an image of its 
internal hidden 
state or self in the 
same feature space 
as its real sensory 
inputs.

• It can see what it 
itself is thinking.

• As before we can 
also observe what 
the machine is 
thinking.

Normal Mode – controller produces motor signals, 
inverse detects mismatch or novelty.

Thinking or Planning– inverse drives input, sequences 
of action to a goal can be manipulated mentally, and then 
switched on for action.

Sleeping – noise is input, producing imagined mental 
images or dreams. The noise vectors can be used to 
update (learn) the inverse.



An ExperimentAn Experiment
Using the Khepera Robot & Webots – Khepera Embodied Simulator

• Simulator complexity is OK for a simple robot 
like the Khepera, but for more complex 
robots, the simulator may be too complex or 
not simulate the real word accurately.

• Simulators allow faster operation than real 
robots – particularly if learning involved.



A much simplified IA much simplified I--P controllerP controller

• Fixed static empty environment.

• Simple Robot: Khepera with 8 IR sensor signals plus 2 motor drive signals.

• Simple adaptive unsupervised VQ modeling system: 

Learns model features directly in the input sensory space. 

Hence no inverse to learn - the internal representation learned by the 
robot is directly visible as an input space vector.

We can directly spy on the internal model.

(based on Linaker and Niklasson 2000 ARAVQ algorithm).

• A 10-dimensional feature space is formed from the 8 Khepera IR sensor 
signals plus the 2 motor drive signals.

• Clusters novel feature-vectors, to form prototype feature vector models.

• Adds new models based on two criteria:

Novelty:  Large distance from existing models.

Stability:  Low variance in buffered history of features.

• Continuously learning new models and adapting existing models over time.



Learning in ActionLearning in Action
• First we learn or program the forward model or robot controller:

• In this simple experiment we program in a simple reactive wall-
following behavior, rather than learn a complex behavior.  

• The robot starts with no internal model, and adaptively learns its 
internal representation in an unsupervised manner as it performs its 
wall following behavior.

•Colors show learned concepts:

Black – right wall

Blue – ahead wall

Green – 45 degree right wall

Red – corridor

Light Blue – outside corner

•Only changes in features are 
shown.

•The robot is continuously outputting 
a string of recognized or newly 
learned features.



Running with the modelRunning with the model

• Switch off the wall follower.

• The  robot sees features as 
it moves.

• Choose the closest learned 
model vector at each step.

• Use the model vector motor 
drive values to actually drive 
the motors.

Color indicates which is the current 
“best” fit model  feature.



Keeping it realKeeping it real

Run the model 
learned in Webots in 

the real robot.

Run the model learned 
in the real robot, in 

the real robot



Manipulating the model “mentally”Manipulating the model “mentally”

• Take the sequence of learned 
model feature vectors and 
cluster sub –sequences into 
higher-level concepts.

• For example: 

• Blue-Green-black = Left 
Corner

• Red = Corridor

• Black = right wall

• At any instant ask the robot 
to go to “home”.

• Run the model forwards 
mentally to decide if it is 
shorter to go ahead or to go 
back.

• Signal appropriate action.

•Corridor corner is home.

•Rotate = Home is behind me.

•Flash LED’s = Home is ahead of me.



More Complex Controller & EnvironmentMore Complex Controller & Environment

• Braitenberg Obstacle Avoider.
• Model learned from simulation.
• More (22) model features learned.

– but complexity still very low for 
the more complex behavior & 
environment.



Higher level behavioral controllersHigher level behavioral controllers
• layer controllers -higher and higher levels of abstraction (Linaker 2002) 
• The lowest level operates at the ms timescale of sensors and actuator 

control. The highest levels operate at symbolic levels and much longer 
goal-driven timescales.

• Adjacent layers modulate the predictions of higher and lower layers, as 
opposed to subsumption (Brooks 1990).

• The controller is capable of solving much more difficult tasks such as 
delayed response tasks – e.g. the road sign problem.

• Learned using delayed reinforcement learning.



Challenge Challenge –– Increase ComplexityIncrease Complexity

• More complex robots

• More complex environments

• More complex architecture

Sony Dream Robot
Environment Agent

Fixed environment Movable body
Moving objects More sensors
Movable objects Effectors
Objects with different values Articulated body
Other agents – prey Metabolic state
Other agents – predators Acquired skills
Other agents – competitors Tools
Other agents – collaborators Imitative learning
Other agents – mates Language
Etc Etc

Head:2 degrees of freedom
Body:2 degrees of freedom
Arms:4 degrees of freedom (x2)
Legs:6 degrees of freedom (x2)
(Total of 24 degrees of freedom)
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