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Abstract 

The goal of the research described in this thesis was to design an a u­

tonomous software agent that can locate specific, relevant information on the 

World Wide Web. The first chapter provides the motivation behind this pro­

ject and a brief overview of the challenges associated with it. The next chap­

ter presents the analysis which led to the development of a new, improved 

version of the computer program called ITRule. The improvements consist 

of a new algorithm for classifying documents that outperforms the previous 

one, significantly enhanced support for data exploration, i.e., the process of 

extracting information from raw data, and a new algorithm for quantizing 

numeric variables so they can be used by ITRule. The third part of this thesis 

compares the performances of three versions of ITRule, two versions of the 

Naive Bayes classifier, several neural networks, the decision tree algorithm 

called CART, and a linear support vector machine, in order to determine 

which one is best suited for selecting relevant web pages. An analysis of the 

test results shows that a new ITRule classification algorithm, based on cross 

validation combined with the J-measure, performs best. The fourth and final 

part of the thesis describes how some of these results were used in the design 

of a user friendly, autonomous software agent called Poirot that can help 

World Wide Web users stay up to date on new developments in topics of in­

terest. 
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Chapter 1 

Introduction 
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The number of pages on the W orId Wide Web has grown tremendously 

over the past few years. As a result, it has become difficult to locate all the ex­

isting information on any given subject. Part of the reason is the relatively 

poor coverage of the W orId Wide Web provided by most search engines 

(Selberg and Etzioni, 1995; Lawrence and Giles, 1998). It is therefore usually 

necessary to consult several of them to ensure that nothing is missed. 

Furthermore, most engines will only accept a short list of keywords for which 

to search. Thus, the selectivity is likely to be quite low unless the desired in­

formation can be concisely and unambiguously specified. 

An additional obstacle is the determination of the optimal keywords to 

use. The user may initially have only a vague idea of what is required and 

will therefore often be unable to provide more than a couple of general 

terms. The result is that the user must manually read through many irrele­

vant web pages in order to find the special words that are actually important. 

Consequently, the web searches may have to be repeated many times with 

both different keywords and engines. In addition, it may be desirable to peri­

odically look for newly created web pages and check for additions and correc­

tions to old pages. 

Computers are well suited for processing large volumes of data and 

should therefore be the ideal tools for automating the above process. Since 

the W orId Wide Web can be explored via the existing search engines, the re­

maining problem is essentially one of classification, i.e., deciding whether or 

not a particular web page is relevant. Once the user has located a few rele­

vant and irrelevant web pages, an algorithm for constructing a classifier de­

termines what distinguishes the relevant pages from the irrelevant ones. 
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The associated classification algorithm can then use this information to de­

cide whether or not other web pages are likely to be relevant. 

Over the past couple of decades, many different algorithms have been 

developed in attempts to solve classification problems, but they all have 

weaknesses. Naive Bayes seems too simple and requires conditional indepen­

dence (Duda and Hart, 1973), though it sometimes works quite well in spite of 

this drawback (Domingos and Pazzani, 1996). In the case of neural networks 

(Haykin, 1999) and support vector machines (Vapnik, 1995), it is difficult to 

explain how they arrive at decisions unless the transformations are particu­

larly simple (Towell and Shavlik, 1992; Setiono, 1997). Rule based classifiers 

such as ITRule (Goodman et al., 1992) are designed to be more comprehensi­

ble, but continuous variables must be quantized to reduce the search space to 

a manageable size and obtain accurate probabilities. Instead of solving the 

problem, this only changes it to that of designing a suitable quantization algo­

rithm. Decision trees (Breiman et al., 1984) avoid the need for quantization, 

but only at the cost of greedily partitioning the input space instead of fully ex­

ploring it and thus being very sensitive to noise in the training data 

(Dietterich, 1997). 

When all the variables associated with a problem are inherently discrete, 

however, then the major objection to using a rule based classifier vanishes. 

Thus, by simply treating the presence or absence of words and phrases in a 

document as Boolean features, the rule based classification system becomes 

more attractive. The ability of such a classifier to explain how it arrives at its 

decisions is especially helpful when applied to the search for web pages be­

cause the words and phrases chosen by the classifier can be sent directly to 
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each search engine. 

However, making decisions based only on the presence or absence of 

words and phrases does not utilize all the available information. The fre­

quency of occurrence may also be important. Unfortunately, Boolean vari­

ables are not sufficient for representing this additional information. Instead, 

one must use numeric variables. For this representation, neural networks 

are suitable, but it is not easy to determine which words to send to a search 

engine because as mentioned earlier, it is difficult to explain how neural net­

works arrive at decisions. 

Thus, since all of the above classifiers seem to have some disadvantages, 

this thesis compares the performances of what is believed to be a reasonably 

representative sample of them in order to determine which approach is like­

ly to yield the simplest and best classification scheme. 

Chapter 2 describes the analysis leading to the design of a new, improved 

version of ITRule. The improvements that are relevant to the task of classi­

fying web pages consist of refinements to the rule based classifier and a faster 

algorithm for choosing the rules which also improves the classifier's accura­

cy. Improvements and additions to ITRule's data exploration capabilities are 

also presented, along with a new algorithm for quantizing continuous, n u­

meric variables. 

Experiments designed to compare the performances of ITRule, Naive 

Bayes, neural networks, support vector machines, and CART with regard to 

classifying web pages are discussed in Chapter 3. The results demonstrate 

that, on average, a new ITRule algorithm, which uses cross validation com­

bined with the J-measure, produces a more accurate classifier than any of the 
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other methods. 

The final chapter presents the design of a user friendly, autonomous 

software agent called Poirot that can search the W orId Wide Web for new, rel­

evant pages and also report interesting changes to pages discovered previous­

ly. In order to illustrate how well this system performs, a detailed description 

of a demonstration session, complete with screen shots, is also included. 
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Chapter 2 

Improvements to the ITRule algorithms 



7 

2.0. Chapter outline 

The first version of the computer program called ITRule was developed 

in conjunction with Padhraic Smyth's thesis (Smyth, 1988). It was given the 

name ITRule because its design is based on rules and information theory. 

There are two tasks to which ITRule can be applied, namely classifica­

tion, i.e., the process of making decisions based on a finite set of training data, 

and data exploration, i.e., the process of discovering useful information in 

raw data. Section 2.1 discusses the issues associated with classification and 

compares the original algorithm developed by Goodman et al. (1992) with 

two new algorithms. These algorithms will later be considered for use in 

Poirot. Section 2.2 presents improvements to ITRule's data exploration algo­

rithms. The process of generating the rules used by the classification and data 

exploration algorithms is discussed in Section 2.3. Finally, Section 2.4 pre­

sents a new algorithm for quantizing continuous variables so they can be 

used in the rule generation process. 

2.1. Review of the classification algorithm 

The idea of using rules to make decisions has been around for several 

decades in the form of expert systems. In such a system, each rule consists of 

a left-hand side (LHS) that specifies a condition and a right-hand side (RHS) 

that contains a statement which is true if the LHS is true. A simple example 

is "If the animal has wings, then it can fly." If only one rule's LHS is satisfied 

in a particular situation, the result is simply the corresponding RHS. If sever­

al rules are satisfied, however, the corresponding RHS's may disagree, thereby 

requiring a conflict resolution mechanism to make the final decision. As an 
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example, there may be another rule that states "If the animal is an ostrich, 

then it cannot fly." It is easy for a human to resolve the conflict in this exam­

ple, but a computer cannot do so without a lot of background information 

and a powerful inference algorithm. When rules are generated from raw 

data, there is usually no background information available. In this case, all 

conflict resolution mechanisms must be ad hoc because the rules are as­

sumed to be correct, and yet they lead to different conclusions. One common 

method of handling this problem is to order the rules in some way and then 

use the first one that applies (Quinlan, 1993; Segal, 1994; Cohen, 1995; Weiss 

and Indurkhya, 1995). In contrast, Padhraic Smyth decided to try a different 

approach in order to avoid the problem entirely. He therefore introduced the 

idea of attaching a probability to each rule (Smyth, 1988). With this approach, 

the above rule might for instance become "If the animal has wings, then it 

can fly with probability 0.995," since there are several species of flightless 

birds. The introduction of a probability, no matter how close to 1.0, elimi­

nates the need for conflict resolution because the rule probabilities can be 

combined in a Bayesian fashion to calculate the probability of each possible 

result instead of forcing the expert system to pick a single outcome. This, in­

cidentally, also makes the system more tolerant of missing values, noise, and 

errors in the data. 

The general form of a probabilistic rule is "If Yj is true, then X=Xj with 

probability p(Xj IYj)'" Let {h, ... , jn} represent the indices of the rules whose 

LHS's are true, N x be the number of possible values of X , and p(Xj) be the 

prior probability of the ith possible value of X. Assuming that the y/s are in­

dependent when the value of X is known, then the posterior probability of X, 
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P(Xi IYjl"'Yjn)' can be calculated in the manner presented by Goodman et al. 

(1992): 

( 'I' ,) - P(Yh ... Yjn I Xi) p(Xi) 
P Xl YJ1'" YJn -

P(Yh ... YjJ 
(Bayes' Rule) 

n 

p(Xi) n P(Yjk I Xi) 
k=l = ----'-'------''-----

P(Yh ... YjJ 
(Conditional Independence Assumption) 

(Bayes' Rule) 

In this result, the first term is independent of i, so it can be represented by a 

constant c: 
n 

II P(Yjk) 
C = ...;,,:k_=--=l __ _ 

P(Yh ... YiJ 

For the posterior probability of X normalized to C, this yields: 

p(Xi I YJ'l ... YJ'n) q i = '---'--------"-.L:.-_=_<= 

C 

In(qi) = In P(Xi) + f In p(Xi I Yjk) 
k=l p(Xj) 

Since Li P(xi IYjl'''Yjn) = I, P can be calculated from q by simply normal­

izing: 
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Figure 2.1 provides a graphical representation of these calculations. 

Based on Boolean value of the kth rule's LHS, the rule either contributes zero 

or In(p(xi IYk)lp(Xi)) to each of the output units. Each output adds in the bias 

of In(p(xi)) and exponentiates the result to get qi. The normalizer then gener­

ates the desired probabilities, P(xi IYjl···Yjn). Beyond this, one can attach an 

extra layer to make a "hard" decision based on the probabilities. The two 

most common algorithms are to pick either the most probable class or a ran­

dom class using the probabilities as weights (Goodman et al., 1992). 

The most obvious difficulty with the above derivation is the assumption 

of conditional independence. Even with the results presented by Domingos 

and Pazzani (1996), it remains a highly dubious proposition that the system 

will work correctly when an arbitrary set of rules is used in a network of the 

form shown in Figure 2.1 (Goodman et al., 1992). The problem of picking 

rules that work well together is analyzed in the next section. 

Another problem with this approach is that C is independent of i only if 

every rule contributes to every output of the network. However, the rules 

used by Goodman et al. (1992) are of the form "If Y is true, then X=xi with 

probability P(xi Iy)." Thus, each rule contributes to only a single output. In 

order to avoid this problem, the new implementation of ITRule instead uses 

rules of the form "If Y is true, then X has probability distribution p(Xly)." 
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2.1.1. Picking the rules to be used by the classification network 

As mentioned in the previous section, the assumption of conditional in­

dependence is unlikely to be satisfied for an arbitrary set of rules. In an at­

tempt to deal with this, Goodman et al. (1992) used the Minimum 

Description Length (MDL) principle to choose rules that empirically satisfy 

this assumption. MDL is based on the theory of data compression. The algo­

rithm greedily picks rules to minimize the number of bits required to encode 

both the rules and the corrections to the errors that the rules make on the 

training data. The description length that Goodman et al. used was: 

where N R is the number of rules, N E is the number of training examples, and 

P (Xi,correct) is the predicted probability of the correct result for the ith training 

example, which is known. The first term represents the number of bits re­

quired to transmit the rule probabilities. The terms of the form 

-log2(p(xi,correct)) are the average number of bits required to transmit errors as 

measured by the Kullback-Liebler distance between the correct and predicted 

probability distributions (Smyth, 1988; Cover and Thomas, 1991). 

The first term in Ll increases as the algorithm adds more rules, while 

the second term decreases as the classification of the training examples be­

comes more accurate. The algorithm terminates when no more rules can be 

found that will decrease the value of L1. 

The results presented by Goodman et al. (1992) show that this approach 

works remarkably well on a variety of data sets. However, the first term in Ll 

is only an ad hoc expression (Smyth, 1996). The theoretically correct descrip-
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tion length formula that accounts for all the information required to trans­

mit rules of the form "If Y1 =a and Y2=b and ... then Xhas probability distribu­

tion p(XIY1=a,Y2=b, ... )" 1 is obtained as follows: 

L2 = (NRHs-1) log2(NE) 
2 

+ log2(NR) 

NR 

+L 
j=l 

( log2(N LHS,maJ 

NE 

nLHS,j 

+ L (log2(Nv) + log2(nv,i)) 
i=l 

+ L - log2(P(Xi,correct)) 
i = 1 

Number of bits required to represent: 

prior probabilities 

number of rules 

for each rule: 

number of variables on 
left-hand side (LHS) 

index of each variable 
and the corresponding value 

probability distribution of 
right-hand side (RHS) 

corrections 

As before, N E is the number of training examples. Among the N R rules, 

N LHS,max is the maximum number of variables that occur on the LHS, n LHS,j is 

the number of variables on the LHS of the jth rule, N v is the total number of 

variables, n Vi is the number of possible values of the ith variable, and N RHS is 

the number of possible values of the RHS variable. 

1 Even though one can, in principle, use any Boolean LHS, Goodmanet al. (1992) chose to use 
this particular form. The reasons for this choice are discussed in Section 2.3. 
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The formula for L2 accounts for sending the prior probabilities for the 

RHS variable, the number of rules, and the LHS conditions and the RHS 

probability distribution for each rule. Unfortunately, these terms produce 

such a large increase2 in L2 for every rule which is added that it completely 

overwhelms the decrease in the last term. Thus, when L2 was tested on a va­

riety of data sets in the collection available from the University of California 

at Irvine (UCI), the value of L2 never decreased, so the algorithm always ter­

minated without choosing any rules. Since the algorithm using L2 never 

chooses any rules, in what follows, MDL refers to the original algorithm 

which uses LI . 

In addition to the fact that the first term in LI is ad hoc, MDL has two 

other undesirable properties. First, it does not provide any indication of how 

well the classifier will perform on an independent set of test data. Without 

this feature, one has no idea whether or not the classifier will actually work 

in practice. In addition, MDL does not allow the user to specify a different 

cost for each type of mistake.3 The relative costs of various errors are typically 

encoded in the function, Fc' to be minimized4 so it rises more steeply when 

an error is made whose consequences are more serious. MDL does not allow 

any such flexibility, however. 

2 Note that a large part of this increase results from attaching a complete probability dis­
tribution to each rule instead of a single probability, as discussed at the end of Section 2.l. 

3 A good example of the importance of specifying the relative costs of errors is the case of 
medical diagnosis when a human life is at stake. It is far more serious to make a mistake tha t 
leads to death than to make a mistake that causes the doctor to perform unnecessary but non­
fatal procedures on the patient. 

4 The function F c is often referred to as the cost function. 
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Cross validation, on the other hand, provides both of these features 

(Breiman et al., 1984). When applied to ITRule, the basic principle is that one 

can estimate the accuracy of any given algorithm for picking the rules gener­

ated from a data set with N E examples by measuring the algorithm's accuracy 

on each data set created by using N E-l examples for training and the last ex­

ample for testing. When repeated for different algorithms, the one with the 

best accuracy estimate is most likely to produce the best classifier when used 

on all N E examples.s Thus, the desired accuracy estimate is automatically 

computed, and it is easy to allow the user to specify the relative costs of vari­

ous errors as long as one uses algorithms that provide this option. 

During the course of the work presented in this thesis, two new algo­

rithms for picking rules have been developed: cross validation combined 

with steepest descent (CV -SD) and cross validation combined with the J­

measure6 (CV-J). CV-SD replaces the MDL criterion with a user specified cost 

function and then utilizes cross validation to determine the optimal number 

of rules to pick. In contrast, CV -J merely picks the N R rules with the largest J­

measures, with N R determined via cross validation. The pseudocode descrip-

tions of the original MDL algorithm and the new CV-SD and CV-J algorithms 

are presented in Sections 2.1.3 through 2.1.5. 

5 Provided, of course, that the models have the same Vapnik -Chervonenkis (VC) dimen­
sion (Vapnik, 1995). 

6 Refer to Section 2.2 for a discussion of the J-measure. 
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2.1.2. Speeding up the Minimum Description Length (MDL) and Cross 

Validation with Steepest Descent (CV-SD) algorithms 

The MDL and CV-SD algorithms are both based on steepest descent. 

They are greedy because it is not feasible to consider all possible subsets of the 

available rules. In order to further reduce the execution time, a simple 

bound has been developed to reduce the number of rules that have to be con­

sidered at each step. 

When using MDL, the first term in Ll always increases by log2(N E)/2 

when a rule is added, while the second term cannot decrease by more than 

L1max,MDL = L - log2(p(xi,correct)) 
i E Sj 

where Sj is the set of examples that satisfy the LHS of the jth rule. If one pre­

calculates a matrix specifying which examples satisfy each rule, and one stores 

an array of -log2(p(xi,correct)) for the current set of rules, then L1max,MDL can be 

calculated very quickly, i.e., O(N R) additions, for each new candidate rule. If 

the result is less than log2(N E)/20r the actual decrease caused by some previ­

ously tried rule, then the rule can be ignored, thus avoiding the work of cal­

culating the exact value of P (xi,correct) for each example. 

A similar bound can be derived for CV-SD. Given a set of candidate 

rules from which to choose and knowing the minimum value, Fcmint that , 

the cost function can attain, the maximum possible decrease that any particu­

lar rule can cause is given by 

dmaxCV-SD , L (Fc,i - Fc,min) 
i E Sj 
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where Fe,i is the current value of the cost function for the ith example. If 

L1 max,CV-SD is less than the actual decrease caused by some previously tried 

rule, then the rule in question is not worth trying. Again, this can be com­

puted with O(N R) additions. This is much faster than calculating the actual 

decrease caused by the rule which requires using the full classification net­

work on each example. Note that the idea behind this bound could be used 

to provide a second bound for use by the MDL algorithm, but the one dis­

cussed above is already sufficiently strong. 

The experimental results confirming the effectiveness of these bounds 

are shown in Tables 2.1 and 2.2. The fraction of rules that are rejected by the 

bounds ranges from 5.5% to 99.4%. The lowest fractions occur when there are 

a large number of examples, which increases the value of L1max by including 

more terms in the summation, or when no single rule is able to significantly 

lower the value of the description length or the cost function, so that even a 

rule with a small value of L1max is worth trying. Conversely, the largest val­

ues occur when a few rules that dramatically decrease the value of the de­

scription length or the cost function are encountered early in the process, so 

that for the rest of the rules, a very large value of L1max is required in order for 

a rule to be worth trying. 

The results shown in Tables 2.1 and 2.2 were generated by using only 

simple rules with a single condition on the LHS. In the general case when 

more specialized rules are also used, the bounds become even more effective. 

There are far more specialized rules than simple rules, and a specialized rule 

is more likely to be rejected than a simple rule. The reason is that a special-
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ized rule usually applies to fewer examples, thereby reducing the number of 

terms in the summation for d mar 



Name of 
topic 

acq 

bop 

coffee 

corn 

cotton 

Cpl 

crude 
dlr 

earn 

gnp 

19 

Effectiveness of the bound used in the 
Minimum Description Length (MDL) algorithm 

Training % rules Name of Training 
set size rejected topic set size 

80 5.5% gold 20 
120 11.6% 30 
20 19.8% grain 60 
30 24.1% interest 60 
20 15.3% money-fx 40 
30 21.1% 60 
20 22.9% 80 
30 23.2% 80 
20 23.7% 80 
40 26.9% money-supply 40 
20 29.1% oilseed 40 
30 22.9% ship 40 
60 26.7% soybean 20 
20 25.0% 30 
30 23.5% sugar 20 
80 30.2% 30 

120 20.3% trade 40 
20 20.9% 60 
30 18.7% wheat 20 

30 

% rules 
rejected 

28.8% 
24.6% 
21.3% 
18.1% 
14.8% 
17.9% 
13.4% 
14.8% 
13.3% 
18.3% 
17.8% 
18.5% 
17.0% 
19.7% 
21.5% 
22.8% 
28.7% 
29.1% 
25.5% 
32.5% 

Table 2.1: The percentage of rules rejected by the bound, L1max,MDLt presented 
in Section 2.1.2. The values range from 5.5% to 32.5%. The data sets were 
generated from the Reuters-21578 collection of news stories. The details of 
this procedure are explained in Chapter 3. 



20 

Effectiveness of the bound used in the 
Cross Validation with Steepest Descent (CV-SD) algorithm 

Name of Training % rules Name of Training % rules 
topic set size rejected topic set size rejected 

acq 80 59.4% gold 20 99.4% 
120 23.8% 30 99.4% 

bop 20 98.0% gram 60 67.5% 
30 97.6% interest 60 38.8% 

coffee 20 98.9% money-fx 40 44.8% 
30 99.4% 60 86.5% 

corn 20 94.5% 80 31.3% 
30 96.2% 80 49.7% 

cotton 20 98.8% 80 45.0% 
40 99.4% money-supply 40 90.0% 

cpi 20 97.8% oilseed 40 88.7% 
30 56.9% ship 40 88.9% 

crude 60 98.3% soybean 20 99.4% 
dlr 20 98.3% 30 93.3% 

30 93.7% sugar 20 98.7% 
earn 80 78.9% 30 97.9% 

120 41.8% trade 40 41.3% 
gnp 20 93.8% 60 23.1% 

30 88.5% wheat 20 99.4% 
30 92.8% 

Table 2.2: The percentage of rules rejected by the bound, .1max,CV-SD, presented 
in Section 2.1.2. The values range from 23.1% to 99.4%. The data sets were 
generated from the Reuters-21578 collection of news stories. The details of 
this procedure are explained in Chapter 3. 
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2.1.3. Pseudocode description of the improved MDL algorithm 

T = set of training examples 
Ntrain = number of training examples 
Generate rules from T. 

C = set of all candidate rules 
(sorted by decreasing J-measure) 

R = empty set 
F = matrix of which rules apply to each example in T 
LIST value of -log2(P(xi,correct)) for each example in T 

using rule set R 
CURRENT description length computed from LIST 

Repeat until R stops growing 
{ 
MIN 
DELTA 

CURRENT 
log2(Ntrain)/2 

For each RULE in C 
{ 
Using F and LIST, calculate ~ax,MDL for RULE 

If A > DELTA '"!nax,MDL 

} 

{ 
L = LIST 
Using F, update L by re-classifying each example in T 

to which RULE applies using RuRULE. 
Using F, compute NEW_DELTA to be the sum of the changes 

in the values of the elements of L. 
V = description length computed from L 
If V < MIN 

} 

{ 
MIN 
DELTA 
BEST_RULE 
BEST_LIST 
} 

=V 
= NEW_DELTA 

RULE 
L 

If BEST_RULE was assigned 
{ 
Move BEST_RULE from C to R. 
CURRENT MIN 
LIST BEST_LIST 
} 

} 

R now contains the final set of rules. 
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2.1.4. Pseudocode description of the new CV-SD algorithm 

J:iIMAX = maximum number of rules to consider 
CV = list of J:iIMAX zeros 
T = set of training examples 
For each example E in T 

{ 
Tl = T with E removed 
Call DESCENT with N=NMAX and S=Tl to get contents of CVl. 
Add each element of CVl to the corresponding element of CV. 
} 

BEST = index of minimum element in CV 
Call DESCENT with N=BEST and S=T to get final set of rules 
(contents of R) . 
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Subroutine DESCENT 
{ 
S = set of training examples 
E = validation example 
Generate rules from S. 

C 

R = 
F = 
CVl 

set of all candidate rules 
(sorted by decreasing J-measure) 

empty set 
matrix of which rules apply to each example in S 
empty list 

LIST = cost of classifying each example in S using rule set R 
sum of values in LIST CURRENT 

Repeat N times 
{ 

} 

MIN 
DELTA 
BEST_RULE = 

CURRENT 
o 
first rule in C 

For each RULE in C 
{ 
Using F and LIST, calculate ~,CV-SD for RULE 

If ~,CV-SD > DELTA 

} 

{ 
L = LIST 
Using F, update L by re-classifying each example in S 

to which RULE applies using RuRULE. 
V = sum of values in L 
If V < MIN 

} 

{ 
MIN 
DELTA 

=V 
= CURRENT - MIN 

BEST_RULE = RULE 
} 

Move BEST_RULE from C to R. 
Update CURRENT and LIST to match new R. 
Append the result of classifying E using R to CVl. 
} 
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2.1.5. Pseudocode description of the new CV -J algorithm 

NMAX 
cv 

= maximum number of rules to consider 
= list of NMAX zeros 

T set of training examples 

For each example E in T 
{ 
Tl = T with E removed 
Generate rules from Tl. 

C = set of all candidate rules 
R = empty set 
CVl = empty list 

Repeat NMAX times 
{ 
Move rule with highest J-measure in C to R. 
Append the cost of classifying E using R to CVl. 
} 

Add each element of CVl to the corresponding element of CV. 
} 

N = index of minimum element in CV 
Generate rules from T. 
Keep N rules with highest J-measure. 



25 

2.1.6. Upper bounds on the computational complexities of the MDL, CV-SD, 

and CV-J algorithms 

Upper bounds7 on the amount of time required for each algorithm to 

finish are given by the following expressions: 

TMDL = Tgen + NMDL N gen Ntrain (Tc + TDd 

TCV-SD = (Ntrain + 1) (Tgen + N max N gen Ntrain (Tc + Tcost)) 

Tcv-J = Ntrain (Tgen + N max (Tc + Tcos t)) + Tgen 

where N train is the number of training examples, Tgen is the time required to 

generate rules from the training data (see Section 2.3), N gen is the number of 

rules that the user wants generated, N MDL represents the number of times the 

outer loop of the MDL pseudocode executes, N max is the parameter from the 

CV-SD and CV-J pseudocode whose value is specified by the user, T c is an 

upper bound on the time required to classify an example, T DL is an upper 

bound on the time required to compute the description length once an exam­

ple has been classified, and Tcos t is an upper bound on the time required to 

evaluate the cost function, FCI once an example has been classified. Typically, 

one sets N max ~ 102 and N gen ~ 103 to help keep the run time reasonable. It is 

not worth the effort to even attempt to write down an expression for N MDL 

since it depends on the statistics of the training data in such a complicated 

way. However, in all the experiments performed for this thesis, the value of 

N MDL was always significantly less than 102 . 

Even with these simple approximations, it is clear from the above ex­

pressions that CV-J is significantly faster than CV-SD, because CV-J lacks the 

factor N gen and only has one factor of N train in front of (T c+ T cost). MDL is sig-

7 Appendices 2-A through 2-D provide the exact expressions. 
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nificantly faster than CV -J, however, because MDL lacks the term N train T gen-

2.1.7. Experimental comparison of the run times of the MDL, CV-SD, and 

CV -J algorithms 

Figure 2.2 depicts measured run times of the MDL algorithm. Also 

shown is a solid line with the slope of the quadratic, Nt;ain. The MDL run 

time has approximately the slope of N t;ain, rather than the slope of N traint be­

cause N MDL tends to increase with the number of training examples. There is 

clearly no simple relationship between N MDL and N traint however. This was 

demontrated by one experiment where three different sets of 80 training ex­

amples were used, and the resulting values of N MDL were 4, 6, and 8. 

The data plotted in Figures 2.3 and 2.4 confirm that the run time of the 

CV-SD algorithm increases quadratically with the number of training exam­

ples, while the run time of the CV-J algorithm is a linear function of N train-

The results presented in Tables 2.3 through 2.6 illustrate the relative exe­

cution speeds of the three algorithms and demonstrate the effectiveness of 

the optimizations discussed in Appendices 2-A through 2-D. The data sets 

that were used were generated from the Reuters-21578 collection of news sto­

ries. The details are discussed in Chapter 3. Here, the only relevant facts are 

that N gen = 200 for all three algorithms8
, N max = 50 for CV-SD, and N max = 200 

for CV-J. The value of T DL was negligible when compared with T c because 

modern CPU's have hard-wired circuitry for computing logarithms. The 

value of Tcos t was also negligible because the cost function was simply a ma-

8 There were 100 Boolean input variables, and only rules of the form "if x is true, then ... " 
and "if x is false, then ... " were considered, where x represents a single input variable. Thus, 
setting N gen = 200 did not exclude any rules at all. 
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trix of constants specifying the cost of each possible mistake. 

It is important to note that in all the above results, the time required to 

generate the rules, represented by Tgen in Section 2.1.6, was excluded because 

that analysis was presented in Randy Spangler's thesis (Spangler, 1999). 

2.1.8. Experimental comparison of the accuracies of the MDL, CV-SD, and 

CV -J algorithms 

Detailed results comparing the performances of the MDL, CV-SD, and 

CV-J algorithms are presented in Chapter 3. Here it is only important to note 

that CV-J was significantly more accurate than both MDL and CV-SD on the 

data sets which were tested, and that the MDL and CV -SD algorithms had ap­

proximately the same performance. 

2.1.9. The sensitivities of the MDL, CV-SD, and CV-J accuracies to the choice 

of adjustable parameters 

The only adjustable parameter in the MDL algorithm is N gew The CV­

SD and CV-J algorithms depend on both N gen and N max. 

All three algorithms operate on the N gen rules with the highest J­

measure (see Section 2.2). The algorithms are only sensitive to the value of 

N gen when it is small so that potentially useful rules are discarded. If the 

value of N gen is set large enough to discard only rules that are certain to be 

useless, then the exact value will not affect the accuracy of the resulting classi­

fier. As mentioned in Section 2.1.6, N gen is typically of the order of 103. In all 

the experiments where N gen caused rules to be discarded, none of the algo­

rithms picked rules near the bottom of the list of remaining rules. This indi-
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cates that keeping the top few thousand rules is sufficient. Using significantly 

more would only slow down the computations. 

The same argument is applicable to N max for the CV-SD and CV-J algo­

rithms. When using the values of N max presented in Section 2.1.7, both CV­

SD and CV-J always chose significantly fewer than N max rules. Since these al­

gorithms search for the minimum misclassification cost, this shows that the 

minimum is achieved by using only a few rules from the top of the list of 

input rules, so appending more rules to the end of the list would have no ef­

fect. 

2.1.10. Extrapolating from the training data 

As with all other classification results obtained from a limited number 

of training examples, one should not expect ITRule to provide accurate an­

swers when it has to extrapolate, i.e., when the value of a variable falls out­

side the range of the training data. In order to guard against this situation, 

the latest implementation of ITRule warns the user about each variable 

whose value is out of range. In such cases, the user must make the final deci­

sion whether or not to trust the result. 
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Adjusted run time of the MDL algorithm 
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Figure 2.2: The discrete points show the adjusted run times of the MDL algo­
rithm as a function of the number of training examples. The solid line has 
the slope of Nd"ain. As discussed in Section 2.1.7, the data appear to fit a 
quadratic instead of a linear function of N train because N MDL tends to increase 
along with N train- The run times were adjusted to remove the effect of 

L1max,MDV since the percentage of rules that this bound rejects varies, as shown 
in Table 2.1. 
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Adjusted run time of the CV-SD algorithm 
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Figure 2.3: The discrete points show the adjusted run times of the CV -SD al­
gorithm as a function of the number of training examples. The solid line has 
the slope of Nd"ain. By comparing the data points and the line, it is evident 
that the CV -SD run time is approximately proportional to N t;ain. The run 

times were adjusted to remove the effect of L1max,CV-SD, since the percentage of 
rules that this bound rejects varies dramatically, as shown in Table 2.2. 
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Run time of the CV-J algorithm 
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Figure 2.4: The discrete points show the measured run times of the CV -J al­
gorithm as a function of the number of training examples. The solid line has 
the slope of N train- By comparing the data points and the line, it is evident 
that the CV-J run time is approximately proportional to Ntrain-
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Run time Measured Upper bound Speed increase 
(seconds) speed rei a- on speed rela- from opti-

tive to CV-J tive to CV-J mizations 

MDL 1.49 0.58 2 3.45 
CV-SD 6.92 2.68 1000 373.13 

CV-J 2.58 

Table 2.3: A comparison of run times on a data set generated from articles 
dealing with the international balance of payments (referred to as "bop" in 
Reuters-21578). For this data set, N train=20, and the computer run yielded 
N MDL = 2. The increase in speed due to optimizations includes the effect of 
the bounds discussed in Section 2.1.2. The other optimizations are discussed 
in Appendices 2-Aand 2-B. 

Run time Measured Upper bound Speed increase 
(seconds) speed rela- on speed rela- from opti-

tive to CV-J tive to CV-J mizations 

MDL 4.68 0.66 2 3.03 

CV-SD 2981.67 418.19 3000 7.17 

CV-J 7.13 

Table 2.4: A comparison of run times on a data set generated from articles 
dealing with trade (referred to as "trade" in Reuters-21578). For this data set, 
N train=60, and the computer run yielded N MDL = 2. The increase in speed due 
to optimizations includes the effect of the bounds discussed in Section 2.1.2. 
The other optimizations are discussed in Appendices 2-Aand 2-B. 
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Run time Measured Upper bound Speed increase 
(seconds) speed rela- on speed rei a- from opti-

tive to CV-J tive to CV-J mizations 

MDL 13.5 1.44 5 3.47 
CV-SD 2703.29 288.81 4000 13.85 

CV-J 9.36 

Table 2.5: A comparison of run times on a data set generated from articles 
dealing with corporate acquisitions and mergers (referred to as "acq" in 
Reuters-21578). For this data set, N train=80, and the computer run yielded 
N MDL = 5. The increase in speed due to optimizations includes the effect of 
the bounds discussed in Section 2.1.2. The other optimizations are discussed 
in Appendices 2-A and 2-B. 

Run time Measured Upper bound Speed increase 
(seconds) speed rei a- on speed rei a- from opti-

tive to CV-J tive to CV-J mizations 
MDL 21.85 1.54 5 3.25 
CV-SD 11126.55 785.22 6000 7.64 

CV-J 14.17 

Table 2.6: A comparison of run times on a data set generated from articles 
dealing with corporate earnings (referred to as "earn" in Reuters-21578). For 
this data set, N train=120, and the computer run yielded N MDL = 5. The in­
crease in speed due to optimizations includes the effect of the bounds dis­
cussed in Section 2.1.2. The other optimizations are discussed in Appendices 
2-Aand 2-B. 
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2.2. Data exploration 

The idea of using rules to represent information has been around for a 

long time. When the goal is to extract information from raw data, the prob­

lem is to decide which rules to keep out of the very large set of all rules gen­

erated from the data (see Section 2.3). In his thesis, Smyth suggested picking 

the rules with the largest J-measures (Smyth, 1988). For the probabilistic rule, 

"If y is true, then x is true with probability p(x Iy)," the J-measure calculates 

how much useful information the rule provides about the raw data. This is 

done by combining the probability of the LHS (y) and the Kullback-Liebler dis­

tance (Cover and Thomas, 1991) between the rule probability and the prior 

probability of the RHS (x) in the following way: 

J = p(y) D(p(x I y) II p(x)) = p(y) (P(X I y) lojp(x I y)) + (1 - p(x I y)) loj1 - p(x I y))) b\ p(x) b\ 1 - p(x) 

The J-measure ranks a rule highly if its LHS is satisfied relatively often, 

i.e., when p(y) is large, and the rule provides new information about the 

RHS, i.e., when p(x Iy) is different from p(x). This gives a low rank to rules 

that are unlikely to apply or that predict what is already known. 

The originalITRule algorithm only printed a list of rules sorted by their 

J-measures. There is, however, quite a bit more that can be done to help the 

user make sense of raw data. In particular, the new version of ITRule pro­

vides additional information about the data, helps the user clean the data by 

locating missing values and unnecessary variables, and provides additional 

methods of organizing the final set of rules beyond merely sorting them by 

their J-measures. 
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2.2.1. Correlations between variables 

Let xi and Yj represent particular values of the variables X and Y, respec­

tively. Correlations between the mutually exclusive values of X and Y can 

then be presented in the form "X=xi ¢:::> Y=Yj with probability p." This ap­

proach exposes the simplest relationships hidden in the data and can be use­

ful during the first stage of data exploration when the user is searching for an 

initial understanding of the problem.9 If one defines 51 and 52 to be the sub­

sets of examples where X=xi and Y=Yj' respectively, then the probability is ob­

tained from: 

151 (\ 52 1 p = --'--------'---
151 U 52 1 

Correlations are usually only interesting when p is close to one. The 

new version of ITRule allows the user to set a threshold on p so correlations 

below the threshold are not reported. One can visualize the set of all correla-

tions as an undirected graph where each node represents a statement, e.g., 

X=Xj, and each edge represents an interesting correlation. As illustrated in 

Figure 2.5, by introducing a third dimension, the strength of each correlation 

can be indicated by the height of the edge above the base plane. The thresh­

old is then a horizontal plane at a particular height. All edges below this 

plane are ignored. 

Unlike in Boolean logic, probabilistic correlations are not transitive. 

This can be seen in the example in Figure 2.5 where X=xi is correlated with 

Y=Yj' and Y=Yj with Z=zk, but X=Xj is not considered to be correlated with Z=zk 

(as indicated by the dashed edge) because it is below the threshold. 

9 Correlations can also be used to clean the data, as discussed in Section 2.2.2.3. 
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Figure 2.5: Example illustrating correlation strengths 

Z=Zk 
Y=y. 1-1 ------I 

X=Xi rIJ __________ , 

I 

w 

Figure 2.6: Venn diagram with three equal intervals displaced laterally 
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A lower bound on the strength of "X=xi ¢:} Z=zk'" represented byp xz, can 

be derived from the strengths of "X=xi ¢:} Y=y/' and "Y=Yj ¢:} Z=zk," represent­

ed by PXy and pyZ' respectively. As an example, if one assumes that the last 

two strengths are equal, and that all three statements have the same number 

of supporting examples, then the minimum possible overlap between the ex­

amples satisfying X=xi and Z=zk is illustrated by the one-dimensional Venn 

diagram shown in Figure 2.6. Since all three intervals have width w, and the 

overlaps between X=xi and Y=Yj and between Y=Yj and Z=zk are both w-.<1, one 

has: 

w-.<1 
P = PXy = PYZ = 

w+.<1 

which yields: 

w = 
l+p 

.<1 1-p 

Since the overlap between X=xi and Z=zk is w-2.<1, the lower bound on 

p xz is therefore 

1 + P -2 
w - 2.<1 1-p 3p -1 

Pxz = = = 
w + 2.<1 1+P+2 3-p 

1-p 

The upper bound on p xz is obviously 1. This occurs when the three sets 

depicted in Figure 2.6 are perfectly aligned, i.e., when .<1 = O. 



38 

2.2.2. Cleaning the data 

There are many ways that data can be cleaned. The particular tasks with 

which the new ITRule can help are detecting noise in the form of missing 

values or irrelevant variables and detecting redundant variables that can be 

eliminated. 

2.2.2.1. Detecting missing values in the data 

Missing information can easily arise in practice due to human errors In 

data entry, e.g., in medical records, insurance claims, etc. These missing val­

ues can always be treated simply as noise. However, the new version of 

ITRule also provides the option to generate rules specifically about the miss­

ing data. This feature may help the analyst identify the problems that are 

causing the values to be absent in the first place so that these data acquisition 

problems can be corrected. 

2.2.2.2. Identifying irrelevant variables 

A variable is defined to be noise if there is no significant correlation be­

tween it and any of the other variables. In terms of probabilistic rules, this 

translates into the statement that if the variable is used on the RHS of a rule, 

then the rule's probability is the same as the variable's prior probability re­

gardless of the rule's LHS. Since the Kullback-Liebler distance is the appropri­

ate measure of the difference between probabilities, a variable is noise if all 

rules with that variable on the RHS have a low J-measure. Thus, by using 

the J-measure, ITRule can automatically detect irrelevant variables as long as 

sufficient data are available to calculate accurate probabilities. 
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Unfortunately, one must sometimes work with data sets that have rela­

tively few examples. When data points are scarce, the statistics become less 

accurate, and it is therefore more likely that ITRule will compute a large J­

measure for a rule that does not actually provide any information. 

As an example, consider the situation where two variables, x and Y, are 

independent. Let the prior probability distribution of x be p(x). When x is 

conditioned on a particular value of Y, the true distribution is still p(x), but 

the distribution computed from the data is likely to be at least slightly differ­

ent. One can think of the examples that support p(x IY=YI) as having been 

drawn without replacement from the pool of all examples. Since x and yare 

independent, the probability distribution that controls the sampling is p(x). 

This situation is illustrated by the simple example in Figure 2.7. 

All examples: Examples where Y = YI: 

x2 
x2 x2 X2 

Xl Xl Xl x2 x2 x2 

NI samples N2 samples MI samples M2 samples 
of Xl of x2 of Xl of x2 

Figure 2.7: The two bins on the left contain all the available samples of x. 
Thus, the prior probabilities of x, i.e., P(x=xI) and P(x=x2), are N I /(N I +N 2) 

and N 2/(N I + N 2), respectively. The two bins on the right-hand side of the fig­
ure contain the samples of X where Y=YI. The corresponding conditional 
probabilities are 
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When the probability distribution associated with the rule "if Y=YI' then 

x" is significantly different from p(x), then ITRule will report that the rule is 

interesting. In principle, one could provide an indication to the user of 

which such rules are likely to be spurious by estimating the probability of ob­

taining a Kullback-Liebler distance, D, greater than the observed value, Dabs' 

under the hypothesis that x and yare independent. If this probability is small 

enough (e.g., 5%), then one could assume that the rule is not spurious. 

For the case depicted in Figure 2.7, let N =N I +N 2 and M=MI +M2 . If one 

assumes that N is large enough so that one never runs out of examples in ei­

ther bin, i.e., that M <min(N I,N 2), then one can treat the sampling as a se­

quence of Bernoulli trials. The probability of drawing xl is therefore p=N I IN, 

while the probability of drawing x2 is I-p =N 2 IN. The probability of drawing 

MI samples of xl and M2 samples of x2 is given by the Binomial distribution: 

In the case when M~min(N I,N 2), one can run out of examples in one of 

the bins. This complicates the calculation significantly, so it is best done n u­

merically on a computer rather than analytically. Regardless of how one 

computes P(MI), however, one obtains the desired probability for a given 

value of M from 

Prob[D> Dabs] = L P(MI) 
M1: D(M1) > Dobs 

where 

(MI) (M -MI) 
D(MI) = MI log M + M -MI log M 

M P M I-p 
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Generalizing this derivation to the case where x has more than two pos­

sible values is straightforward. Note that the maximum value of P(M l ) oc­

curs when D(M l ) is zero. The situation is similar to testing hypotheses with a 

Gaussian distribution. In fact, in the limit when N is large, the exact 

Binomial distribution can be approximated by a Gaussian distribution with 

mean M p and variance M p(l-p). Of course, in this limit, one has enough ex­

amples that the above calculations are unnecessary. However, the Gaussian 

approximation may be useful for obtaining estimates of the probabilities even 

when the value of N is only moderately large. 

There is one theoretical and one practical problem with the above ap­

proach. The theoretical complication is that the more often one repeats a sta­

tistical test, the more likely it becomes that the test will give the wrong an­

swer at least once. One solution to this difficulty is the Bonferroni method 

presented by Bay and Pazzani (1999). Unfortunately, the practical problem ap­

pears to be insurmountable. The time required to calculate P(M l ) when 

M~min(N 1,N 2) is exponential in M since one has to consider separately each 

way of obtaining Ml samples of xl and M2 samples of X2. This makes the en­

tire approach unfeasible. 

2.2.2.3. Using correlations to discard redundant variables 

The new correlation feature discussed in Section 2.2.1 can also be used to 

clean the data. If one finds that every value of one variable is correlated with 

a different value of another variable, then one should consider discarding 



42 

one of them.lO This will reduce the time required for ITRule to consider all 

possible rules because the execution time is an exponential function of the 

number of variables (see Section 2.3). It is not appropriate for ITRule to auto­

matically search for redundant variables, however, because there might be 

values that are not present in the data or there might not be enough exam­

ples to justify some of the correlations. It is a judgment that the user must 

make. As a guideline, if X and Y have the same number of possible values, 

and there is a one-to-one correspondence between them, then either X or Y 

can be discarded. If X has N x possible values, Y has Ny possible values, 

N x>N y, and Ny of the possible values of X each has a one-to-one correspon­

dence with one of the values of Y, then X should be discarded since it has val-

ues that are unused. (It is impossible for two values of X to both be correlated 

at a level above 50% with one value of Y since the values of X are mutually 

exclusive.) These cases are illustrated in Figure 2.8. 

Discard X or Y Discard X (x2 is unused) 

X Y 

Figure 2.8: When two variables are fully correlated, one can be discarded 

10 One could simply calculate the mutual information between the variables (Ezawa and 
Schuermann, 1995), but this single value does not reveal the underlying structure of how the 
variables are related. The Markov blanket algorithm presented by Koller and Sahami (1996) 
also has this problem. John et al. (1994) provides a good overview of some of the other auto­
mated algorithms. 
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2.2.3. Identifying significant rules 

One can generate a nearly unlimited number of different rules from a 

given set of data (see Section 2.3). Without a way to filter and organize these 

rules, however, this merely replaces the problem of studying a large quantity 

of raw data with the problem of studying a large number of rules. The new 

version of ITRule includes several features that can assist the user in dealing 

with this problem. 

The original version of ITRule sorted the rules by their J-measures and 

discarded all rules with J-measures below a user specified threshold (Smyth, 

1988). The actual value of the J-measure is probably meaningless to most 

users, however. The new version of ITRule therefore replaces the threshold 

on the J-measure with a threshold on the minimum number of examples to 

which a rule applies, i.e., the rule's support. 

The new version ofITRule also displays the likelihood ratio, p(x Iy)/p(x), 

for each rule. While it may be difficult to decide whether or not a rule with 

probability 0.3 is important, it is clear that a rule with likelihood ratio 10 is 

quite interesting because conditioning on the LHS makes the RHS ten times 

as likely to be true. 

2.2.3.1. Discarding subsumed rules 

In addition to the simple rule selection tools discussed above, ITRule 

also has a filter that is based on the concept of subsumption. This is a gener­

alization of the J-measure. The justification for discarding rules that have 

low J-measures is that these rules do not provide sufficient information be­

yond that of the prior probabilities, i.e., the simplest possible rule. 
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Subsumption extends this concept by using the Kullback-Liebler distance to 

discard rules that do not provide any information beyond that of all simpler 

rules. As an example, the analysis of a data set might yield the following four 

rules for the condition x: 

R1: For the entire data set, x is true with probability PI 

R2 : For the subset of examples where y is true, 
x is true with probability P2 

R3: For the subset of examples where z is true, 
x is true with probability P3 

R 4 : For the subset of examples where y and z are true, 
x is true with probability P 4 

Here, rule R2 is discarded if the difference between PI and P2 is not con­

sidered significant. The same applies to R 3 . If R2 and R3 are discarded, then 

R4 is discarded if P 4 is close to Pl· If R2 is kept, however, R4 is discarded if P 4 

is close to P2 but is set aside in a separate list of rules if P 4 is sufficiently differ­

ent from P2 but close to Pl. (The equivalent action is taken if R3 is kept.) The 

reason for the separate list is that some users consider R4 to be just as interest­

ing as R2 because it tells them that combining the two conditions y and z 

changes the probability of x, while others feel that R4 is only of secondary in­

terest since P 4 is close to Pl. By presenting two lists of rules in a situation like 

this one, ITRule allows the user to first grasp the main ideas by studying the 

first list and then look for subtleties by examining the second list. 

Since the actual values of the Kullback-Liebler distance are meaningless 

to most users, the condition "close" is specified as a fraction of the maximum 

Kullback-Liebler distance between any two rules. Aggressive filtering might 
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use 0.5, while conservative filtering might use 0.1. 

2.3. Generating rules 

So far, the discussion has ignored the issue of how to generate the rules 

that are used by the algorithms for classification and data exploration because 

these algorithms are independent of how the rules are generated. Any set of 

probabilistic rules can in principle be used. In his thesis, Smyth presented an 

algorithm that, given a set of discrete valued variables, computes the proba­

bility for each possible conjunctive rule of the form "If Yl=a and Y 2=b and ... 

then X=xt (Smyth, 1988; Smyth and Goodman, 1992). (The number of terms 

on the LHS is called the rule's "order.") Unfortunately, there are two serious 

problems with this approach. The first is the restriction that the variables 

cannot be continuous, numeric variables. This is unavoidable, as discussed 

in the next section. The second problem is the computational complexity of 

the algorithm. If there are N variables available for use on the LHS, and the 

ith one has n i possible values, then the number of possible rules is given by: 

(,~ (ni + 1))-1 
The reason is that each of the N variables either takes one of its ni values or 

is excluded, and the single case with all variables excluded is not relevant. 

Even in the case of only 20 Boolean variables, there are over 3 billion possi­

bilities. The solution is to switch from a possibility driven algorithm to a 

data driven algorithm, i.e., only the rules that are actually supported by the 

data should be considered. This is the basis for the SpanRule algorithm 

(Spangler, 1999) which is used in the current implementation of ITRule. 
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However, this algorithm is unfortunately not fast enough either, when it 

comes to generating all the supported rules in a reasonable amount of time. 

The reason is that even though the algorithm is only O(n log2(n)) in the 

number of examples and does not depend significantly on the number of val­

ues for each variable, it is still exponential in the number of variables. 

ITRule therefore only generates rules from the first order up through some 

maximum rule order specified by the user, typically two or three. Since low 

order rules also have the largest support, this provides the additional benefit 

of generating only the rules that are most likely to have a large J-measure.ll 

In addition, since the classification algorithm does not place any restrictions 

on the form of the LHS that can be used12
, ITRule allows the user to enter ar-

bitrary Boolean expressions to be considered along with the rules that are au­

tomatically generated. 

2.4. Quantizing numeric variables 

As discussed in the previous section,ITRule can only generate rules for 

variables with a limited number of discrete values. Thus, numeric variables 

must be quantized before they can be used. This is a fundamental problem 

with all probabilistic approaches. Since each particular value of a continuous, 

numeric variable is by itself very unlikely to occur, one must consider ranges 

of values in order to get enough examples to generate accurate probabilities. 

Of course, it also makes intuitive sense that only ranges should matter, not 

exact values. Clearly, trying every possible quantization is far too time con-

11 Note that cleaning the data by removing redundant variables also reduces the run time. 
This is discussed in Section 2.2.2.3. 

12 The subsumptionalgorithm (see Section 2.2.3.1) requires that every LHS be a specializa­
tion of some other, simpler LHS. 
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suming. This section therefore presents the theory behind Minimal Entropy 

Partitioning (MEP), a newly developed algorithm for obtaining a useful quan-

tization. 

The most general method for scalar quantization is first to transform the 

examples by passing a subset of the available variables through a function 

f: 9\Nv --7 9\ and then to determine an ordered set of breakpoints, b2 < b3 < ... < 

bNI, that separate the real number line into intervals [b i, bi+1), with b1 = - 00 

and bNI+1 = + 00. The index of the interval containing an example becomes 

the value of the new discrete variable for that example. 

Ideally, the examples in an interval will all belong to the same class, as 

illustrated in Figure 2.9. In practice, however, this is usually not possible. 

Instead, one can only attempt to maximize the homogeneity of each interval 

by adjusting its breakpoints to minimize the entropy of the examples that it 

contains, as illustrated in Figure 2.10. Since decreasing the entropy of one bin 

may increase the entropy of the adjacent bins, it is necessary to minimize the 

weighted sum of the entropy of all the bins, H total, which is given by: 

NJ 

H '" Ni HI' total = £... 
i=l NE 

Nc 

Hi = - L pi,e log(Pi,c) 
e=l 

Pi,e 

Here, N I is the number of intervals, N e is the number of classes, N E is 

the total number of examples, N i is the number of examples in the ith inter­

val, and N i,e is the number of examples in the ith interval that belong to class 
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c. Adjusting all the breakpoints between intervals to minimize the value of 

Htotal yields the optimal quantization for a given N I. The factor N /N E en­

sures that nearly empty, mixed bins do not overwhelm the contribution of 

large, nearly homogeneous bins. 

An existing algorithm called Recursive Minimal Entropy Partitioning 

(RMEP) (Dougherty et al., 1995) uses this idea in a way that is similar to grow­

ing a decision tree. It begins by placing a single breakpoint (N I = 2) and then 

recursively applies itself to each newly created interval. The Minimum 

Description Length (MDL) principle is used to stop the process before it cre-

ates a separate interval for each example. As with decision trees, the process 

does not backtrack, so if the first breakpoint is poorly chosen, the effort is 

doomed. The new MEP algorithm avoids this problem by simultaneously ad­

justing all the breakpoints (via any minimization algorithm) when N I> 2. 

While this is guaranteed to always be able to do at least as well as RMEP, since 

the search space for MEPis larger, MEPhas the disadvantage that the number 

of intervals is not determined automatically. In order to avoid the problem 

of choosing a single quantization, ITRule has been modified to allow multi­

ple quantizations of the same variable to be specified and to automatically en­

sure that only one quantization of a variable is used in a particular rule. This 

allows all the quantizations that appear promising to be tried 

simultaneously.13 

In addition, MEP has the advantage that it can optimize the transforma­

tion f at the same time that it adjusts the breakpoints. It simply asks the 

minimization algorithm to treat the parameters of f as additional values to 

13 This also allows oneto try entirely different algorithms for quantization. Doughertyet 
al. (1995) and Kohavi et al. (1997) have, for instance, shown that using ten equally wide inter­
vals often performs surprisingly well. 
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be optimized. This expands the search space for MEP even further, again en­

suring that MEP will be able to do at least as well as RMEP as long as MEP does 

not get stuck in a local minimum. 

In the simplest case, f is the scalar identity transform, producing the 

value of a single, numeric variable. In multi-dimensional problems, howev­

er, the optimal decision boundaries are usually not parallel to any of the axes 

and are often not even linear. Thus, f typically combines several or even all 

of the variables. If one wishes to enforce linear decision boundaries, one 

must use a linear combination of the variables. Otherwise, one could use a 

two layer neural network to provide an arbitrary, non-linear transformation. 

It should be noted that if all the data variables are continuous, then MEP 

provides a complete classifier for a discrete class variable if one uses an algo­

rithm such as cross validation to determine the optimal number of break­

points. On the other hand, if one has a mixture of discrete and continuous 

data variables, then ITRule should be used to take into account the additional 

information provided by the discrete data variables. In addition, it may not 

be appropriate to combine all the numeric data variables into a single trans­

formation. The final result will be much easier to understand if one uses 

several transformations, each combining only related variables, instead of a 

single transformation that produces values to which even the experts cannot 

assign any meaning, as is sometimes the case when using a single neural net­

work. 
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2.4.1. A comparison of the Minimal Entropy Partitioning (MEP) and 

Recursive Minimal Entropy Partitioning (RMEP) algorithms 

Two simple experiments were performed to compare the performance of 

MEP and RMEP. First, a fully separable, one-dimensional data set was created 

as shown in Figure 2.9. The letters 0 and x represent data points belonging to 

two different classes, and the carets (A) indicate the optimal breakpoint loca­

tions. The RMEP algorithm stopped after placing only the left breakpoint. 

When instructed to use two breakpoints, MEP correctly placed both of them. 

When only one breakpoint was requested, MEP correctly stated that the left 

and right positions were the two best choices. 

The second experiment used the one-dimensional data set shown in 

Figure 2.10 to test the case where the data is not fully separable. In this case, 

the carets indicate the Bayes-optimal breakpoint locations. This time, RMEP 

also stopped after placing only one breakpoint. In this case, however, it did 

not even place it in an optimal location. Instead, it placed it between the 

third and fourth data points from the left. MEP, on the other hand, correctly 

placed breakpoints at the Bayes-optimal locations when instructed to use two 

breakpoints. Moreover, when told to use only one breakpoint, MEP correctly 

stated that the positions of the two carets were the best choices. 

Even though these two examples are quite simple, they clearly demon­

strate that MEP can produce significantly better results than RMEP. 
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oooooxxxxxxxxxxooooo 
/\ /\ 

Figure 2.9: Separable data set for comparing MEP and RMEP. The carets indi­
cate the locations of the optimal breakpoints. 

oooxoxoxxxxxxoxoxooo 
/\ /\ 

Figure 2.10: Non-separable data set for comparing MEP and RMEP. The 
carets indicate the locations of the Bayes-optimal breakpoints. 
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2.4.2. The Minimal Entropy Partitioning (MEP) algorithm 

This section presents the details of the MEP algorithm. For computa­

tional reasons discussed in the next section, MEP does not use the actual 

Shannon entropy function (Cover and Thomas, 1991). Instead, MEP mini­

mizes the function F, defined as follows: 

F = 

Gi = 

qi,c = 

Mi = 

mi,c = 

NT 

L Mi Gi 
i=l NE 

Nc 1 {4 2 
1 L ql,C 

Nc- 1 C = 1 4 (1 - qi,c)2 

mi,c 

Mi 

Nc 

L mi,c 
c=l 

L mi(Yj) 
Yi E class c 

O 2 1 <q. <-
- I,C - 2 

1 2 1 -< q. :::; 2 I,C 

Here, N c is the number of classes, N E is the number of examples, and N I 

is the number of intervals. As discussed in Section 2.4, Yj can be either the 

value of a single data variable or a transformation of several data variables. 

m i(Y) is called the interval membership function. It has the shape shown in 

Figure 2.11. Any function with this shape can be used as long as it is differen­

tiable at all points. One simple example is: 
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t (Y - ;~- b)) bi - 8 < y < bi + 8 

1 bi + 8 -::; Y -::; bi+ 1 - 8 

t ((h i+1 ~ : - y) 

o everywhere else 

t(y) = 3 y2 - 2 y3 

Here, 8 is an adjustable parameter that determines the width of the tran­

sition regions in Figure 2.11. The choice of an appropriate value for 8 is dis­

cussed in the next section. RMEP implicitly uses this function with 8=0 when 

it computes the entropy of the examples in each interval. One can apply MEP 

in this case, but only if one uses a minimization algorithm that does not re­

quire continuity, e.g., simulated annealing (Corana et al., 1987) or a simplex 

algorithm (NeIder and Mead, 1965). In this case, F will not be continuous be­

cause it remains constant while a breakpoint moves within the interval be­

tween two adjacent examples and changes abruptly when the breakpoint 

passes an example. By setting 8>0, F becomes differentiable, thereby allowing 

it to be minimized via gradient based algorithms. 

2.4.3. Analysis of the function, F, minimized by the Minimal Entropy 

Partitioning (MEP) algorithm 

In the definition of F presented in the previous section, q and G are used 

instead of p and H, respectively. This was done to indicate that qi,c and Gi do 

not represent the real probabilities and entropies. However, q becomes a 
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probability in the limit when 8=0. (It should be noted that even when 0>0, 0 

~ qi,c ~ 1 and Lc qi,c = 1.) 

The entropy, H, is not used in the definition of F because it causes F to be 

concave down, as illustrated by the example in Figure 2.13 for the case of one 

breakpoint. This shape places the minima in narrow valleys which can dra­

matically increase the time required for gradient based algorithms to find a 

minimum. In addition, the slope of F becomes infinite as the value of F ap­

proaches zero, again due to the shape of the entropy function. (The data set 

used to generate this surface is marked above the graph using "0" and "x" to 

represent the two different classes.) G is therefore concave up as shown in 

Figure 2.12. This places the minima in wide basins that are much easier to 

find, as shown in Figure 2.14. The cusp in G can be smoothed out, as demon­

strated by the graphs of Gs in Figure 2.12 and F in Figure 2.15, but experiments 

have shown that this is not necessary because gradient descent always moves 

away from any sharp edges caused by the cusp, so the lack of differentiability 

does not cause problems. In addition, the cusp does not introduce any in­

finite slopes. Briefly stated, G causes problems in regions that are avoided by 

minimization algorithms, while H presents difficulties in the region directly 

surrounding the minimum. 

It is important to note that the graphs in Figures 2.13 through 2.15 were 

generated by choosing 8to be wider than the distance between adjacent exam­

ples. If this is not done, F will have the shape of a staircase function as illus­

trated in Figure 2.16. Even though this surface is differentiable at every point, 

it is perfectly flat between examples, so gradient descent will not work. 
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In the typical case of overlapping class distributions, F also has many 

local minima when 8 is of the order of the distance between adjacent exam-

ples. This is illustrated in Figure 2.17. Setting 8 much larger than the dis­

tance between adjacent examples can eliminate these spurious minima with­

out changing the position of the global minimum, as shown in Figure 2.18. 

This case also demonstrates another problem with using the entropy, H, in­

stead of G. As Figure 2.19 shows, the minimum of F is not at the Bayes­

optimal location because H(y) rises so rapidly near y=O that when the break­

point starts at b=25 in Figure 2.19 and moves to the right, the decrease in the 

contribution to F from the bin (b, 100] is swamped by the increase in the con­

tribution from the bin [0, b). (Gs does not have this problem because, like G, it 

has zero slope at y=O and y= 1.) 

As can be seen by comparing Figures 2.14 and 2.18, the less separable the 

classes are, the shallower the valleys will be. In all cases, F attains its maxi­

mum value of one when the breakpoints are far from all the data points. 

When the classes are fully separable, F achieves the value of zero when the 

breakpoints are positioned optimally. If there is no correlation between the 

data variables and the class variable, then the data points from each class will 

be uniformly distributed, and F will be flat. 
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Figure 2.13: Sample MEP surface using H 
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Figure 2.14: Sample MEPsurface using G 
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Figure 2.15: Sample MEPsurface using Gs 
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Figure 2.17: Sample MEP surface using G with 8 of the order of the separa­
tion between adjacent examples when perfect separation is not 
possible 
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Figure 2.18: Sample MEPsurface using G with 8 much larger than the sepa­
ration between adjacent examples when perfect separation is not 
possible 
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Figure 2.19: Sample MEPsurface using H with 8 much larger than the sepa­
ration between adjacent examples when perfect separation is not 
possible 
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Appendix 2-A: The analytical expression for the computational complexity 

of the improved MDL algorithm 

The amount of time required for the MDL algorithm to finish can be de­

rived directly from the pseudocode presented in Section 2.1.3: 

Tgen 

+ N gen Ntrain TLHS 

+ Ntrain TDL 

NMDL 

+L 
i=l 

Ngen - i + 1 

L 
j=l 

[ /R,j N train T add 

+ /L1,j ( 

Time required to: 

generate initial set of rules 

evaluate every LHS on every example 

initialize LIST 

repeat until description length 
stops decreasing: 

for each rule that has not already 
been added to the final set of rules: 

compute ,1max,MDL 

if the value is large enough: 

re-classify examples and 
compu te -log2 (p (Xi,correct)) 

compute description length 

Most of these symbols are defined in Section 2.1.6 where the formula for 

the upper bound on T MDL is presented. The parameter / R,j is the fraction of 

the examples that are processed as a result of optimizing to operate only on 

the examples to which the candidate rule applies, while / L1,j is the fraction of 

the rules that are processed as a result of using the bound ,1max,MDL presented 

in Section 2.1.2. Both of these parameters lie in the interval (0,1]. The func­

tion T dn) computes the amount of time required to classify one training ex-
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ample when there are n rules in the classification network of Figure 2.1. This 

function is analyzed in Appendix 2-D. The parameters Tadd and T DL represent 

the amounts of time required to perform one addition and compute one 

term in the summation in the formula for Ll presented in Section 2.1.1, re­

spectively. T LHS represents the average amount of time required to evaluate 

a rule's LHS. Since the LHS can in principle be arbitrarily complex, a simple 

expression for T LHS cannot be given. However, if the LHS is a conjunction of 

simple conditions, as discussed in Section 2.3, then T LHS is merely the time 

required to check the values of one or more data variables. 
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Appendix 2-B: The analytical expression for the computational complexity 

of the new CV -SD algorithm 

The amount of time required for the CV-SD algorithm to finish can be 

derived directly from the pseudocode presented in Section 2.1.4: 

Tcv-so = 

(Ntrain + 1) { 

Tgen 

+ N gen (Ntrain -1) TLHS 

+ (Ntrain - 1) Tcos t 

N max 

+L 
i = 1 

Ngen - i + 1 

L 
j=1 

[ fR,j N train T add 

fR,j N train (T c( i) + T cost) 

+ Ntrain Tadd)] } 

+ N train N max T add 

Time required to: 

for each call to DESCENT: 

generate initial set of rules 

evaluate every LHS 
on every example 

initialize LIST 

repeat N max times: 

for each rule that has not 
already been added to the final 
set of rules: 

compute L1max,CV-so 

if value is large enough: 

re-classify examples and 
evaluate cost function 

compute total cost 

add list CVl to list cv 
(inside outer loop) 

Most of these symbols are defined in Section 2.1.6 where the formula for 

the upper bound on T cv-so is presented. The parameter f R,j is the fraction of 

the examples that are processed as a result of optimizing to operate only on 

the examples to which the candidate rule applies, while f 11,j is the fraction of 
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the rules that are processed as a result of using the bound ..1max,CV-SD presented 

in Section 2.1.2. Both of these parameters lie in the interval (0,1]' The func­

tion T c(n) computes the amount of time required to classify one training ex­

ample when there are n rules in the classification network of Figure 2.1. This 

function is analyzed in Appendix 2-D. The parameters Tadd and Tcost repre­

sent the amounts of time required to perform one addition and evaluate the 

cost function introduced in Section 2.1.1, respectively. Since the cost function 

is specified by the user and may therefore be arbitrarily complex, an expres­

sion for Tcost cannot be given. However, if the cost function is simply a ma­

trix of constants specifying the cost of each possible mistake, as it was for the 

experiments presented in Chapter 3, then Tcos t is the time required to look up 

a value in memory. T LHS represents the average amount of time required to 

evaluate a rule's LHS. Since the LHS can in principle be arbitrarily complex, a 

simple expression for T LHS cannot be given. However, if the LHS is a con­

junction of simple conditions, as discussed in Section 2.3, then T LHS is simply 

the time required to check the values of one or more data variables. 
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Appendix 2-C: The analytical expression for the computational complexity 

of the new CV-J algorithm 

The amount of time required for the CV-J algorithm to finish can be de­

rived directly from the pseudocode presented in Section 2.1.5: 

Tcv-J = 

Ntrain ( 

Tgen 

N max 

+ L (Tc(i) + Teost ) 
i == 1 

+ Tgen 

Time required to: 

for each training example: 

generate initial set of rules 

repeat N max times: 
add next rule and classify the example 

add list CVl to list CV 

generate the final list of rules 

Most of these symbols are defined in Section 2.1.6 where the formula for 

the upper bound on T CV-J is presented. The function T c(n) computes the 

amount of time required to classify one training example when there are n 

rules in the classification network of Figure 2.1. This function is analyzed in 

Appendix 2-D. The parameters Tadd and Teost represent the amounts of time 

required to perform one addition and evaluate the cost function introduced 

in Section 2.1.1, respectively. Since the cost function is specified by the user 

and may therefore be arbitrarily complex, an expression for Teost cannot be 

given. However, if the cost function is simply a matrix of constants specify­

ing the cost of each possible mistake, as it was for the experiments presented 

in Chapter 3, then Tcos t is the time required to look up a value in memory. 
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Appendix 2-D: The analytical expression for the time required to classify one 

example using the rule-based classification network 

The amount of time required for the rule-based classification network to 

classify one example can be derived from the procedure in Section 2.1: 

Tc(n) = n TLHS 

+ NRHS ( 

fR n Tadd 

+ Texp) 

+ NRHS (Tdiv + Tadd) 

Time required to: 

evaluate the LHS of each rule 

for each output: 

add the values from the rules 
that were satisfied 

exponentiate the result 

normalize the results 

Here, n is the number of rules in the network, N RHS is the number of 

outputs from the network, and T LHS represents the average amount of time 

required to evaluate a rule's LHS. Since the LHS can in principle be arbitrari­

ly complex, a simple expression for T LHS cannot be given. However, if the 

LHS is a conjunction of simple conditions, as discussed in Section 2.3, then 

T LHS is simply the time required to check the values of one or more data vari­

ables. It is important to note that the pseudocode presented in Sections 2.1.3 

and 2.1.4 assumes that the matrix of Boolean values resulting from evaluat­

ing every LHS for every example has been pre-calculated. In this case, T LHS is 

zero. The parameter f R is the fraction of rules whose LHS's are satisifed. All 

that can be said about this value is that it lies in the interval [0,1]. The sym­

bols T exp' Tdiv' and Tadd represent the amounts of time required to exponenti­

ate, divide, and add two numbers, respectively. 
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Chapter 3 

Experimental comparison of the classification 
algorithms considered for use in Poirot 
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3.0. The data used to evaluate the classifiers 

This chapter presents the results of experiments designed to compare the 

performances of the three different versions of ITRule presented in Chapter 

2, two variants of the Naive Bayes classifier (Duda and Hart, 1973), several 

neural networks (Haykin, 1999), the decision tree algorithm, CART (Breiman 

et al., 1984), and a support vector machine (Vapnik, 1995), in order to deter­

mine which classifier is best suited for use in Poirot. The data sets utilized in 

these experiments were generated from a well known collection of 21,578 ar­

ticles published by the Reuters News Service during 1987 (Reuters-21578, 

1987). Each article has been manually classified as belonging to one or more 

of 120 different topics. This collection of articles is large and diverse. 

Although they are not actual web pages, they provide good substitutes. 

In the experiments described here, each training set was generated by 

first picking a topic and then randomly choosing N articles about the chosen 

topic and N articles about other topics. The corresponding test set consisted 

of the remaining articles about the chosen topic and an equal number of ran­

domly chosen articles concerning other topics in order to ensure that the a v­

erage accuracy one could expect to get from pure guessing was 50%. For each 

training set and its corresponding test set, sampling was done without re­

placement so no article was used more than once. When generating data 

sets, only topics containing a reasonably large number of articles were used, 

thereby ensuring that each test set contained at least 100 examples so that the 

performance of each classifier was evaluated accurately. 
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3.1. The method used to calculate the probabilities used by the classifiers 

Since there is only a finite number of training examples, only approxi­

mate statistics can be calculated. ITRule and Naive Bayes therefore use the 

Laplacian formula for estimating probabilities (Kohavi et al., 1997). With this 

method, the probability that a relevant article will contain a particular word 

is given by: 

N wnr + 1 
p(wlr)=--­

N r + 2 

Here, N WIlY is the number of relevant documents that contain the word 

of interest, and N r is the total number of relevant documents. When N r is 

zero, N WIlY must also be zero, so p(w Ir) = 1/2. This corresponds to the maxi­

mum entropy assumption which is considered to be the best guess when no 

other information is available. As N r increases, the information about the 

frequency of occurrence of the word becomes more and more accurate. This 

eventually overwhelms the contribution of the constants, so p(w Ir) asymp­

totically approaches N wIIY/N r. The same principle is used for computing all 

the other probabilities that are required. 

3.2. Misclassification costs 

Since most users probably prefer to skim and reject some irrelevant arti­

cles rather than risk missing an interesting article, the cost! of misclassifying 

an article as irrelevant was set to twice the cost of misclassifying an article as 

relevant in all experiments except with the neural networks, where the usual 

1 The term "cost" is used because it is analogous to situations such as finance or medicine 
where all decisions can be measured in monetary units. When dealing with web pages, the cost 
is not related to anything concrete, butis simply a subjective measure of the relative severity of 
the different types of errors. 
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mean squared error was used. As demonstrated by the results presented in 

Section 3.5.3, this turned out to be primarily an issue of principle because 

varying the cost did not significantly affect the performance of any of the al­

gorithms. 

3.3. Reducing the run time by prefiltering the list of words obtained from the 

training articles 

The complete list of unique words for a set of training articles usually 

numbers in the thousands. When phrases are included, this may rise to tens 

of thousands. Many of these potential input features, such as articles and 

conjunctions, provide no information. By discarding these useless words 

and phrases before the classifier construction algorithm (see Section 3.4) is 

run, one can dramatically increase the speed of the computations without a 

noticeable loss of accuracy (see Section 3.5.4). 

In order to decide which words and phrases to discard, a ranking func­

tion is used. This function is evaluated separately for each word and phrase. 

After sorting them in descending order of the value of the ranking function, 

all but the top N words and phrases are discarded. 

The most commonly used ranking function is the mutual information, 

I(W;A), between the Boolean occurrence of each word, represented by the 

random variable W, and the Boolean relevance of each training article, repre­

sented by the random variable A. As illustrated in Figure 3.1, the value of 

this function is large for words that occur in many relevant articles but in 

only a few irrelevant articles, and also visa versa. 
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Using the value of I(W;A) to rank the words does not produce the cor­

rect result in all cases. For instance, if there are an equal number of relevant 

and irrelevant training articles, and the word only occurs once in each rele­

vant article but many times in each irrelevant article, then I(W;A) is zero. 

This will cause the word to be ignored since zero is the lowest value that the 

mutual information can attain. However, even though I(W;A) is zero in this 

case, the distribution of the word clearly indicates that articles containing the 

word are likely to be irrelevant since the word occurs much more often in ir­

relevant articles than in relevant ones. In order to handle this case correctly, 

a new ranking function dubbed the word imbalance, FWI' has been developed: 

!Nr-Nr! ( ) FWI = max p(w I r), p(w If) 
N r + N r 

Here, r denotes relevant and f not relevant. The symbols N rand N r rep­

resent the average numbers of occurrences of the word in relevant and irrele-

vant articles, respectively. Similarly, p(w Ir) and p(w If) are the probabilities 

that the word occurs in relevant and irrelevant articles. The first factor in the 

formula provides a measure of the imbalance in the distribution of the word 

between the sets of relevant and irrelevant training articles. The denomina-

tor of this factor scales the value so that it lies in the interval [a, 1]. If the 

word occurs equally often in both sets, the value of the function is zero. The 

second factor ensures that the value of the function is also small for words 

that are very rare in both sets.2 

2 Without the absolute value bars, FWI would provide additional information. A positive 

value would indicate that an article containing the word is relevant, while a negative value 
would indicate that an article containing the word is irrelevant. This additional information 
is not needed by the classifier construction algorithm, however. It only requires an unbalanced 
probability distribution, not a probability distribution that specifically indicates "relevant." 
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Figures 3.1 through 3.4 provide examples of the difference between the 

mutual information and the word imbalance. The graphs were generated 

using one hundred relevant articles and one hundred irrelevant articles. 

Figure 3.1 shows I(W ;A) as a function of the fraction of relevant and irrele­

vant documents that each contain ten occurrences of the word under consid­

eration. Figure 3.2 plots the word imbalance under the same conditions. 

Note that both functions have the same shape in this case. The only differ­

ence is in the curvature. This is demonstrated by the graph in Figure 3.3 

which plots the difference between the two functions. The difference is zero 

down the middle and at all four corners. 

The situation is very different if each relevant article that contains the 

word at all contains only one occurrence rather than ten. The graph of the 

mutual information does not change. The word imbalance, on the other 

hand, changes dramatically, as shown in Figure 3.4. The initial example dis­

cussed above occurs when all the articles contain the word, i.e., at (I, 1) in the 

relevant-irrelevant plane of the graph. The word imbalance gives a value of 

1(1-10)/(1+10) 1 zO.82, in stark contrast to the mutual information which is 

zero. The word imbalance is zero along the line between (0, 0) and (1,0.1) in 

the relevant-irrelevant plane, as opposed to the mutual information which is 

zero along the line between (0, 0) and (I, 1). The displacement of the word 

imbalance's II zero line" demonstrates this function's sensitivity to the n u m­

ber of occurrences of the word, rather than only the Boolean occurrence of 

the word, as is the case with the mutual information. 
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Considering the success of the J-measure used by ITRule, one might be 

tempted to use the Kullback-Liebler distance (Cover and Thomas, 1991) be­

tween p(w Ir) and p(w 11'), denoted by D(p(w Ir)11 p(w 11')). This does not work, 

however, because this distance measure is unbounded. Even if the word oc-

curs in only a single, relevant article, as illustrated in Table 3.1, 

D(p(w Ir)llp(w If)) will be infinite. Both the mutual information and word 

imbalance give a very low score in this case. ITRule will also ignore the word 

because it considers the J-measure between each column and the prior proba­

bility distribution, not the distance between the rows. In Table 3.1, the left 

column produces a rule with very low J-measure because the probability of 

the rule's LHS is very low, and the right column does the same because the 

distribution is very close to the prior distribution. 

In practice, picking the top 100 words with either mutual information or 

word imbalance yields mostly the same words, merely in a different order. 

As shown in Section 3.5.4, discarding all but these top 100 words does not de­

grade performance. The relevancy score which is common in the informa­

tion retrieval literature was not tried because Wiener et al. (1995) state that it 

produces results very similar to those obtained when using mutual informa-

tion. 

occurs 

relevant liN 
not relevant a 

does not 
occur 

0.5 -liN 

0.5 

Table 3.1: Joint probabilities if a word occurs in only a single, relevant train­
ing article, and there are equally many relevant and irrelevant articles. There 
are a total of N training articles, so Pr(word occurs n article is relevant) = liN. 
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Mutual Information 

Figure 3.1: Plot of the mutual information, I(W;A), as a function of the frac­
tion of relevant and irrelevant training articles that contain a given word. 
The random variable W represents the Boolean occurrence of a word, and 
the random variable A represents the Boolean relevance of a training article. 
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Figure 3.2: Plot of the word imbalance, FWI, as a function of the fraction of 
relevant and irrelevant training articles that contain a given word. This plot 
was generated by using relevant and irrelevant articles that either did not 
contain the word or contained ten occurrences of the word. 
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Word Imbalance Minus Mutual Information 

o 

1 

Figure 3.3: Plot of the difference between the word imbalance and the mutual 
information as a function of the fraction of relevant and irrelevant training 
articles that contain a given word. This plot was generated by using relevant 
and irrelevant articles that either did not contain the word or contained ten 
occurrences of the word. 
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Figure 3.4: Plot of the word imbalance, FW/I as a function of the fraction of 
relevant and irrelevant training articles that contain a given word. This plot 
was generated by using relevant articles that either did not contain the word 
or contained one occurrence of the word and irrelevant articles that, if they 
contained the word, contained ten occurrences of the word. Note that the 
"zero line" from (0, 0) to (1,0.1) is not clearly visible because the sampling 
grid is too coarse. The graph is zero at the three points (0, 0), (0.5, 0.05), and 
(1,0.1) because these lie on both the zero line and the sampling grid. 
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3.4. Description of the classification algorithms 

3.4.1. ITRule 

The three algorithms, MDL, CV-SD, and CV-J, described in Chapter 2 

were all tested. The input variables were Boolean values denoting the pres­

ence or absence of words or phrases. Only first order rules were considered 

for MDL and CV-SD because the run time was excessive even in this case. 

For CV-J, inclusion of second order rules produced significantly lower accura­

cy, so only the results for first order rules are presented here. 

In the case of CV -SD, the cost function was a simple matrix of constants. 

The cost of correctly classifying an example was zero. The cost of misclassify­

ing an example as relevant was one, while the cost of misclassifying an exam­

ple as irrelevant was two, as discussed in Section 3.2. 

As the results below show, the CV-J algorithm works very well. 

However, it should be noted that when only one word is needed to distin­

guish between relevant and irrelevant articles, and the data set has an equal 

number of positive and negative examples, then the algorithm will fail. The 

reason is that every cross validation cycle will use M positive and M-1 nega­

tive examples or visa versa. Thus, when a single word is a perfect discrimi­

nator,ITRule only needs to pick a single rule that moves the predicted proba­

bility in the direction opposite the initial slant in the prior probability distri­

bution. For instance, with M positive and M-1 negative examples, the de­

fault decision is "relevant," and one only needs the rule "if word is not pre­

sent, then p(not relevan t)",,1" to always get the correct result. In this case, this 

happens to be the rule with the highest J-measure since it is further from the 
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prior distribution, so the result of cross validation is "pick the single rule 

with highest J-measure." This does not work on the complete set of M posi­

tive and M negative examples, however, because it is perfectly balanced. 

Since the prior distribution is not slanted in either direction, one needs both 

rules "if word is present, then ... " and "if word is not present, then ... " in 

order to make the correct prediction in all cases. Thus, in order to work in 

this special case, the algorithm presented in Section 2.1.5 was modified so it 

cannot pick fewer than two rules.3 

3.4.2. Naive Bayes 

The Naive Bayes classifier produces probability estimates under the as­

sumption that the input variables are conditionally independent when given 

the class (Domingos and Pazzani, 1996). This is identical to the case when 

ITRule is restricted to use only first order rules except that when Naive Bayes 

uses an input variable, it automatically uses both rules for that variable, i.e., 

"if x=T, then ... " and "if x=F, then "ITRule, on the other hand, can choose 

each one separately. 

The input variables for this classifier were Boolean values denoting the 

presence or absence of words or phrases. Two different algorithms for picking 

the words to be used were tested, namely NB-96 and NB-CV. NB-96 is the al­

gorithm used by Pazzani and Billsus (1997). It simply picks the 96 words and 

phrases with the highest mutual information between the Boolean occur­

rence of the word or phrase and the Boolean value indicating the relevance 

of the article to the topic under consideration. While many have studied the 

3 It should be noted that when the algorithm is nul on a data set where the number of posi­
tive and negative examples is not equal, it correctly picks two rules even without this adjust­
ment. 
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effects of varying the number of words that are used (Joachims, 1996; 

Mladenic, 1996; Pazzani and Billsus, 1997; McCallum and Nigam, 1998), no­

body seems to have considered the problem of determining the optimal 

number of words. In the course of the research presented in this thesis, the 

new NB-CV algorithm was developed to do just this. It sorts the words and 

phrases in decreasing order of the word imbalance and uses cross validation 

to pick the top N. This is fundamentally the same algorithm as ITRule CV-J, 

except that the ranking function is different. 

3.4.3. Neural networks 

The experiments were performed with the basic, feed forward neural 

network architecture because it is the most widely used. Since even this sim­

ple configuration has a dizzying number of adjustable parameters, any at­

tempt to optimize all these settings would alone take years of computer time. 

The network size chosen by Pazzani and Billsus (1997) was therefore used, 

namely 96 input units (the same features used by NB-96 above) and twelve 

hidden units. Both the hidden layer and the output layer used the hyperbolic 

tangent function whose range is [-I, +1]. In order to avoid forcing the units 

into saturation, the training data used +0.9 to indicate "relevant" and -0.9 to 

indicate "not relevant." (During testing, positive output values were consid­

ered to be "relevant," and negative output values were considered "not rele­

vant.") The initial weights were randomly chosen in the interval [-0.001, 

+0.001]' and plain gradient descent was used with a learning rate of 0.1 and a 

momentum of 0.9. Training was stopped after 5000 iterations. This compro­

mise allowed the training error to decrease to within a few percent of the ab-
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solute minimum without using excessive amounts of computer time. In 

order to compensate for the tendency to find only local minima instead of the 

global minimum, ten independent trials were conducted on each data set, 

and only the best performance was recorded. 

Two different types of input features were tested. In the first case (NN­

Boolean), the input variables were Boolean values denoting the presence or 

absence of words or phrases. In the second case (NN-Numeric), the input 

variables were numbers representing the frequency of occurrence of each 

word or phrase, i.e., 

number of occurrences of the word 
numbe; of words in the article 

This approach often produces very small input values. However, these 

values are guaranteed to lie in the interval [0, 1], so the method does not suf­

fer from normalization problems if a test article is longer than any of the 

training articles. Scaling these values separately for each article so they lay in 

the interval [-1, +1] was also tried, but the performance was significantly 

worse, so these results are not reported. 

In addition, to compensate for the fixed number of hidden units, the ef­

fect of using a weight decay factor of 0.995 was investigated in both cases, i.e., 

NN-Boolean-Decay and NN-Numeric-Decay. The results of all these trials 

are presented in Section 3.5. 
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3.4.4. Classification and Regression Trees (CART) 

CART (Breiman et al., 1984) builds a decision tree from the training data 

and then uses cross validation to prune the tree to combat the problems of 

overfitting and sensitivity to noise. The tests presented here used the imple­

mentation of CART provided by the "IND" package (Buntine, 1992). Since 

CART can handle both discrete and continuous variables, the same two types 

of input variables were tried that were used in the neural network. For con­

sistency with the neural network results, these two cases are denoted by 

CART-Boolean and CART-Numeric. Since IND does not accept more than 

250 input variables and pushing this limit is not recommended (Buntine, 

1992), the top 100 words ranked by word imbalance were used. 

3.4.5. Support Vector Machines (SVM) 

On the advice of Dr. Joshua Alspector (Alspector, 2001), only the linear 

support vector machine (Vapnik, 1995) with Boolean inputs was tested. This 

algorithm simply searches for the hyperplane that best separates the relevant 

and irrelevant training articles. The training data used +1 to indicate both 

"relevant article" and "word or phrase is present" and -1 to indicate the op­

posite. Preliminary experiments showed that using all the available words 

and phrases as features resulted in very poor accuracy, e.g., 50%, so the same 

cross validation algorithm that was used in NB-CV was used to pick the opti­

mal number of input variables. The tests presented here used the implemen­

tation of SVM provided by the SVMlight package (Joachims, 1999). Since this 

software does not directly support any form of feature selection4
, a separate 

4 As with the Naive Bayes algorithm, nobody appears to have considered the problem of 
determining the optimal number of words. 
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program was created to implement the cross validation algorithm and run 

SVMlight for each set of words. Unfortunately, this method is very slow be­

cause it requires writing a separate data file for each set of words and invok­

ing SVMlight from scratch on each data file. In addition, SVMlight often got 

stuck in an infinite loop when there were fewer than ten features. The cross 

validation algorithm was therefore restricted to considering only sets of 

words of size 10, 15, 20, 25, ... , 100. 

3.5. Experimental comparison of classifier performances 

Before presenting the test results, it is necessary to describe how the com­

parisons of the classifiers were performed. Since the ultimate goal of this re­

search was to develop a system that would assist users in locating relevant 

web pages, the performance goal was somewhat flexible. A system will be 

considered useful even if its performance is not perfect. The performance 

measure used in all the experiments was the test accuracy, which is defined as 

the ratio of the number of testing examples that were classified correctly to 

the total number of testing examples. 

As illustrated in Figure 3.5, the performance of the best algorithm, 

namely NB-CV, rarely dropped below 80% accuracy. This may not appear 

particularly good when compared with the ideal accuracy of 100%, but when 

one takes into account the time that the user saves by not having to study 

each irrelevant page manually, it is an impressive result. Moreover, misclas­

sifying a web page as "relevant" is not a serious problem as long as it does not 

occur too often. Misclassifying a web page as "not relevant" can be more seri­

ous but is not usually critical because the user will probably discover the page 
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while surfing from other relevant pages. 

The performance criterion is also flexible in the sense that users are u n­

likely to notice a difference in accuracy of a couple of percent. Thus, rigorous 

statistical tests were not used as the primary method of comparison.5 Instead, 

one classifier was considered to be better than another if its average perfor­

mance was at least several percentage points higher across all the data sets 

that were generated, and the standard deviation was small when compared to 

the mean. This approach was chosen because there will always be variations 

due to the randomness in the sampling process.6 

The comparison between mean and standard deviation can easily be per­

formed by plotting the difference in absolute accuracy across all the data sets. 

If the mean (shown by a horizontal dashed line) does not appear to be signifi­

cant relative to the standard deviation (indicated by the scatter of the points), 

then the user is unlikely to notice the difference between the algorithms. 

As an example of how to read the graphs, Figure 3.8 shows the accuracy 

difference between NB-CV and NB-96. When the average "Difference in 

Percent Accuracy" is 10.18 as indicated by the dashed line, this means that if 

NB-96 achieved 79.82% accuracy on average, then NB-CV achieved 90% accu-

racy on average. 

5 The "Difference of Two Proportions Test" (Dietterich, 1998; Yang and Liu, 1999) was never­
theless applied in all cases. The result from a single test example was assumed to be a 
Bernoulli random variable. Under this assumption, the total number of mistakes is a binomial 
random variable. If one assumes that the results from different classifiers are independent and 
uses the Gaussian approximation to the binomial distribution, one can obtain a unit Normal 
random variable and use a two-sided test to check the null hypothesis that two classifiers 
have the same performance. As discussed in Section 3.0, the data sets used in this thesis were 
generated independently. Thus, the unit Normal random variables generated from different 
data sets should be independent. By applying the Central Limit Theorem, the results from a 11 
the data sets were combined to obtain a single unit Normal random variable. The correspond­
ing Z value is given in the figure caption for each graph. 

6 This randornnessis actually a good way to simulate the way in which users accumulate 
web pages. 
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3.5.1. Comparing the effects of using single words and phrases 

When only the occurrences of single words were considered, NB-CV, 

ITRule CV-J, and SVM performed equally well on average as can be seen 

from the graphs in Figures 3.6 and 3.7.7 As shown in Figures 3.8 through 3.16, 

these three algorithms also performed better on average than NB-96, the two 

other ITRule algorithms, the neural networks, and CART. 

The NN-Boolean-Decay and CART-Boolean algorithms performed sec­

ond best. While one could argue that the difference in accuracy between 

these two algorithms and NB-CV is too small to be noticeable by users, there 

are additional issues which make NB-CV preferable. When compared with 

the neural network algorithms, the training process for NB-CV runs at least 

two orders of magnitude faster. In addition, since NB-CV explicitly chooses 

particular words, it is also much easier to determine which words should be 

sent to search engines. In Figure 3.15, the average difference between NB-CV 

and CART-Boolean is quite small only because there are so many data sets on 

which they both performed equally well. On the data sets where their perfor­

mance differed, NB-CV was almost always better. 

It is also interesting to note that NN-Numeric and CART-Numeric per­

formed worse than NN-Boolean and CART-Boolean, respectively. (crf. 

Figures 3.11 through 3.16) Apparently, neither algorithm was able to utilize 

the word frequency information. Because of these results, word frequencies 

were not tried with ITRule or SVM. 

7 The fact that NB-CV and ITRule CV -J performed equally well might have been expected 
since they use the same basic algorithm. 
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When the occurrences of two and three word phrases were also includ­

ed, ITRule CV-J, NB-CV, SVM, NN-Boolean-Decay, and CART-Boolean did 

sometimes make use of them, but on average, the performance only i m­

proved slightly, as can be seen from the graphs in Figures 3.17 through 3.2l. 

Even though there were no significant improvements on average, it is i m­

portant to note that the inclusion of phrases did not degrade the average per­

formance, either. In fact, the only reason the average accuracies of NB-CV 

and ITRule CV-J did not change considerably is that the performance differ­

ence was zero on a large fraction of the data sets. On the data sets where the 

performance was different, the use of phrases almost always improved the ac­

curacy. Thus, it is worthwhile to include phrases as potential input features. 

It is important to note that when phrases were included, "stop words" 

were automatically removed before the articles were passed to a classifier. 

Stop words are words such as articles and conjunctions that are not useful for 

discriminating between relevant and irrelevant articles. When only single 

words were used as features, all the classifiers automatically ignored stop 

words because they had no discriminatory power. Removing them ahead of 

time was therefore unnecessary. However, when phrases were included, stop 

words often degraded the performance. As an example, if "merger" was 

ranked highly by the word imbalance, then "the merger," "merger with," and 

"the merger with" were also likely to be ranked highly. However, such 

phrases clearly provide no additional information. Thus, by removing stop 

words like "the" and "with" before passing the articles to the classifier, this 

problem was avoided. The list of stop words that were removed is given in 



90 

Appendix 3-A.8 

3.5.2. Improvements in performance when more training examples are 

added 

In order to model the scenario where the user evaluates only a few web 

pages before asking Poirot to make suggestions, the experiments discussed in 

Section 3.5.1 were performed with a small number of training articles. An ex­

periment was also conducted in which a larger number of training articles 

was used for each topic. This models how well Poirot might perform after 

the user has used it for a while and accumulated a larger collection of web 

pages. The results are depicted in Figure 3.22. There is a clear and consistent 

improvement in performance when more training data is available. 

A second experiment was performed to demonstrate this result in more 

detail for two particular topics. For each training set size, 20 independent data 

sets were generated and tested. Sampling without replacement was used 

within each data set, but sampling with replacement was used between data 

sets. Figures 3.23 and 3.24 show that as the training set size increased, the a v­

erage performance improved, and the standard deviation due to the varia­

tion in the training data decreased, i.e., the classifier both worked better and 

was more reliable. 

B The source of this list has unfortunately been lost, but there are several other lists a v a i 1-
able from http://www-a2k.is.tokushima-u.ac.jp/member/kita/NLP/lex.html 
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3.5.3. The sensitivity of classifier accuracy to variations in the misclassifica­

tion costs 

As discussed in Section 3.2, the cost of misclassifying an article as irrele­

vant does not have to be equal to the cost of misclassifying an article as rele­

vant. The NB-CV and ITRule CV-J algorithms were tested with the relative 

cost of misclassifying an article as irrelevant set to I, 2, and 4. Figures 3.25 and 

3.26 demonstrate that ITRule CV-J has the same average accuracy for all three 

values of the cost. As shown in Figures 3.27 and 3.28, NB-CV performs 

marginally better when the relative cost is two. This indicates that these two 

algorithms are not particularly sensitive to the value of the relative cost. 

3.5.4. The effect on classifier accuracy of prefiltering the list of words obtained 

from the training articles 

The NB-CV and ITRule CV-J algorithms were tested on both unfiltered 

and filtered sets of words and phrases to determine the effect of filtering out 

all but the top 100 words via the word imbalance ranking function (see 

Section 3.3). The results are shown in Figures 3.29 and 3.30. It is clear from 

these plots that filtering the list of words did not have a detrimental effect on 

the accuracy. The issue does not apply to NB-96 or any of the neural net­

works because they always pick the top 96 words. (As discussed in Section 

3.4.3, optimizing the number of words for the neural networks was not at­

tempted because it would require too much CPU time.) The issue does not 

apply to SVM either, because, as discussed in Section 3.4.5, this algorithm 

only considered the top 100 words in order to avoid using excessive run time. 

The test could not be performed directly on CART because it cannot accept 
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more than 250 features, but tests did show that using the top 250 words pro­

duces exactly the same performance as using the top 100 words. 

3.5.5. The effect on classifier accuracy of using stemmed words 

Stemming is the process of combining the statistics for words that have 

the same root, such as "fly" and "flying." This improves the support of each 

resulting stem, thereby producing more accurate statistics. However, this is 

done at the cost of reducing the predictive power of some features due to a v­

eraging over the words that are combined into a single stem. The stemming 

algorithm that was used for this thesis is the one developed by Porter (Frakes 

and Baeza-Yates, 1992). When NB-CV and ITRule CV-J were tested on both 

unstemmed and stemmed sets of words, there were no significant differences 

in the average performance, as shown in Figures 3.31 and 3.32. 

An additional experiment was conducted to reduce the variance due to 

the sampling process used to generate the data sets. For each of 11 different 

topics, 20 data sets of the same size were created. Sampling without replace­

ment was used within each data set, but sampling with replacement was used 

between data sets. NB-CV was run on each data set for both unstemmed and 

stemmed words. The difference between the average performances using un­

stemmed and stemmed words was not significant, as shown in Figure 3.33. 

The error bar for each topic shows the estimated standard deviation calculat­

ed from the variation in performance over the 20 data sets for that topic. 
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3.5.6. Experimental comparison of the run times of the various algorithms 

Figures 3.34 through 3.36 plot the measured run times of the NB-CV, 

CART-Boolean, and SVM algorithms as functions of the number of training 

examples, N train" The run time of the NB-CV algorithm is clearly a linear 

function of N traiw while the run time of the CART-Boolean algorithm ap­

pears to be proportional to the square root of N train" For the SVM algorithm, 

since cross validation had to be performed by a separate program and was 

therefore very slow as explained in Section 3.4.5, the time required for this 

computation was not measured. Instead, the run time was measured for the 

case when the top 100 words and phrases as ranked by the word imbalance 

were used as input variables. In this case, the run time of the SVM algorithm 

is clearly a linear function of N traiw as illustrated by Figure 3.36. If all the 

computations for SVM were done in one program, cross validation would, in 

the worst case, produce an additional factor of N train in the computational 

complexity.9 

The run times of the ITRule algorithms presented in Section 2.1.7 are 

not directly comparable to the run times plotted in Figures 3.34 through 3.36 

because the current implementation of ITRule performs significant amounts 

of disk access10 while the NB-CV, CART, and SVM algorithms operate entirely 

in RAM. The run times of the neural network algorithms were not mea­

sured because they are known to be slow to train, and the factor of ten penalty 

in the run time resulting from the strategy used to avoid local minima (see 

Section 3.4.3) merely exacerbates the problem. 

9 It is possible that clever optimizations could reduce or even eliminate this additional fac­
tor. 

10 The software was originally designed to handle very large data sets that would not fit in 
the available RAM. 



94 

3.6. Experimental comparison of classifier performances on a second data set 

In order to verify that the superior performance of NB-CV was not due 

merely to some quirk of the Reuters-21578 collectionll
, the NB-CV, NB-96, 

SVM, and CART-Boolean algorithms were also tested on the WebKB data set 

(Craven et al., 1998). This is a collection of 8,282 web pages collected from the 

computer science departments of several large universities. The web pages 

are grouped into seven categories: course information, department informa­

tion, faculty home pages, research project home pages, staff home pages, stu­

dent home pages, and" other." Even though these categories are far broader 

than any topic likely to be of interest to a Poirot user, the data set nevertheless 

provides a good test of whether or not NB-CV might be useful for other clas­

sification problems. For each topic except" other," 20 independent data sets 

were generated and tested. Sampling without replacement was used within 

each data set, but sampling with replacement was used between data sets. 

Each data set had 100 training pages and over 1000 testing pages. Both the 

training and testing data was evenly split between relevant and irrelevant 

pages. Table 3.2 shows the average accuracy of each algorithm and the corre­

sponding standard deviation due to the variation in the training data. The 

accuracies of NB-CV, NB-96, and SVM all fall within one standard deviation 

of each other, while CART-Boolean performed significantly worse. 

The effect on the performance of NB-CV of using only single words or 

including phrases without stop words was also tested. The results are shown 

in Table 3.3 and demonstrate the same result as in Section 3.5.1, namely that 

using phrases provides, on average, a slight improvement in performance. 

11 This does seem rather unlikely considering the wide variety of topics for which data sets 
were generated. 
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Finally, the effect of adding more training examples was tested, as in the 

second half of Section 3.5.2, and the same result was obtained, namely that in­

creasing the number of training examples increased the average accuracy and 

decreased the standard deviation due to the variation in the training data. 

The details are shown in Table 3.4. 

course dept. faculty project staff student 
NB-CV 87.7%±2.5 91.6%±2.9 85.9%±2.3 77.2%±3.8 70.8%±5.1 81.3%±3.4 
NB-96 87.6%±2.6 91.4%±2.2 86.7%±1.8 78.1%±2.2 72.6%±3.9 81.7%±2.6 

SVM 89.1%±2.1 91.2%±2.8 87.2%±1.5 79.0%±2.3 71.5%±3.9 79.4%±4.0 
CART 84.5%±2.4 82.4%±5.7 84.6%±1.9 69.6%±7.3 65.9%±8.7 70.1%±6.1 

Table 3.2: Average accuracies on each WebKB category. The averages were 
taken over 20 independently generated data sets, each with 100 training ex­
amples and at least 1000 testing examples. The standard deviations are due to 
the variations in the training data. 

course dept. faculty project staff student 
words 85.4%±4.0 90.6%±2.5 85.1%±2.6 77.3%±4.0 71.1%±5.6 75.9%±6.2 

phrases 87.7%±2.5 91.6%±2.9 85.9%±2.3 77.2%±3.8 70.8%±5.1 81.3%±3.4 

Table 3.3: Average accuracies achieved by NB-CV on each WebKB category 
when only single words were used and when phrases without stop words 
were included. The averages were taken over 20 independently generated 
data sets, each with 100 training examples and at least 1000 testing examples. 
The standard deviations are due to the variations in the training data. 

course dept. faculty project staff student 

30 80.4%±7.1 84.2%±5.8 78.2%±8.6 66.9%±6.6 60.5%±6.9 70.8%±5.3 

100 87.7%±2.5 91.6%±2.9 85.9%±2.3 77.2%±3.8 70.8%±5.1 81.3%±3.4 

Table 3.4: Average accuracies achieved by NB-CV on each WebKB category 
when data sets with 30 and 100 training examples were used. The averages 
were taken over 20 independently generated data sets. The standard devia­
tions are due to the variations in the training data. 
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3.7. Comparison with other published results 

Many papers have been published during the past few years comparing 

the performance of various classifiers. Of the ones that used the Reuters-

21578 data set, none used accuracy as the measure of performance. Instead, 

they used recall, precision, the precision/recall breakeven point (PRBEP) 

(Raghavan et al., 1989), or some other function. As explained by Schapire et 

al. (1998), these measures are all unsuitable for comparing text classification 

algorithms. However, since it is desirable to allow comparisons between the 

newly developed NB-CV algorithm and algorithms developed previously by 

other researchers, the PRBEP was computed for each data set that was generat­

ed from the Reuters-21578 and WebKB collections. 

In order to compute the PRBEP for a particular data set, the NB-CV clas­

sifier was first constructed from the training articles. Next, the test articles 

were sorted in descending order of the output values that they produced 

when used in the classifier. The misclassification cost was then varied so that 

the threshold for predicting "relevant" was placed successively between each 

pair of adjacent test articles, and the precision and recall were computed at 

each position of this threshold. The PRBEP is defined as the value of the pre­

cision and recall when they are equal. Following the method used by 

Joachims (1998), the Probability of Relevance (PRR) algorithm (Raghavan et 

al., 1989) was used to interpolate the precision and recall curves to find the 

breakeven point when it did not occur at a threshold position. The details of 

this interpolation algorithm are explained in Appendix 3-B. Multiple 

breakeven points on a single data set were never encountered, but the algo­

rithm was designed to report the lowest one if this situation had occurred. 



97 

acq corn crude earn grain interest money-fx ship trade wheat 
NB-CV 92.5 100 100 92.5 100 95.0 95.0 100 91.4 100 
Joachims 95.4 85.7 88.9 98.5 93.1 76.2 76.3 86.5 77.8 85.9 

McCallum 93.9 70.4 83.9 98.0 81.7 62.6 67.4 86.1 71.7 65.4 

Table 3.5: The highest precision/ recall breakeven points achieved by the new 
NB-CV algorithm when using phrases without stop words, the non-linear 
support vector machines tested by Joachims (1998), and the multinomial 
Naive Bayes classifier developed by McCallum and Nigam (1998) on ten top­
ics chosen from the Reuters-21578 collection. NB-CV performs much better 
on eight of the ten topics, and is only slightly inferior on the other two. 
Joachims also tested the well known TF-IDF (Rocchio, 1971), C4.5 (Quinlan, 
1993), and k-nearest neighbors (Duda and Hart, 1973) algorithms. All three of 
these algorithms had lower precision/ recall breakeven points than the non­
linear support vector machines that he tested. 

category minimum maximum 

course 86.5 96.0 

department 90.0 98.0 

faculty 84.0 100.0 

project 78.8 100.0 

staff 58.3 96.0 
student 88.0 96.0 

Table 3.6: The minimum and maximum precision/recall breakeven points 
achieved by the NB-CV algorithm on each of the six categories in the WebKB 
collection. These values were obtained from the data sets with 100 training 
examples that were discussed in Section 3.6. 
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Figure 3.5: This graph shows the accuracy of the Naive Bayes using Cross 
Validation (NB-CV) algorithm. The experiments were performed with 167 
data sets generated from the Reuters-21578 collection of news articles. Only 
single words were used to identify relevant articles. The accuracy is defined 
as the percentage of testing examples that were classified correctly. The aver­
age accuracy, indicated by the dashed line, was 90%, and the performance 
rarely dropped below 80%. Because of its excellent performance, the NB-CV 
algorithm was chosen for use in Poirot. 
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Figure 3.6: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and Cross Validation using the J-measure (ITRule CV-J) 
when only single words were used to identify relevant articles. The average 
difference is 0.21 %. This is not statistically significant (Z=l.l, see Section 3.5). 
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Figure 3.7: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and the linear support vector machine (SVM) when 
only single words were used to identify relevant articles. The average differ­
ence is -0.05%. This is not statistically significant (Z=0.68, see Section 3.5). 
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NB-CV Accuracy Minus NB-96 Accuracy 
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Figure 3.8: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and Naive Bayes using 96 words (NB-96) when only sin­
gle words were used to identify relevant articles. The average difference is 
10.18%, as shown by the dashed line. This is statistically significant far be­
yond the 0.1 % confidence level (Z=30, see Section 3.5). 
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ITRule CV-J Accuracy Minus ITRule MDL Accuracy 
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Figure 3.9: Difference in accuracy between Cross Validation using the J­
measure (ITRule CV-J) and Minimum Description Length (ITRule MDL) 
when only single words were used to identify relevant articles. The average 
difference is 6.53%, as shown by the dashed line. This is statistically signifi­
cant far beyond the 0.1% confidence level (Z=16, see Section 3.5). 
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ITRule CV-J Accuracy Minus ITRule CV-SD Accuracy 
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Figure 3.10: Difference in accuracy between Cross Validation using the J­
measure (ITRule CV-J) and Cross Validation using Steepest Descent (ITRule 
CV-SD) when only single words were used to identify relevant articles. The 
average difference is 7.18%, as shown by the dashed line. This is statistically 
significant far beyond the 0.1% confidence level (Z=18, see Section 3.5). 
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Figure 3.11: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and Neural Network with Boolean inputs (NN­
Boolean) when only single words were used to identify relevant articles. The 
average difference is 3.45%, as shown by the dashed line. This is statistically 
significant far beyond the 0.1 % confidence level (Z=9.4, see Section 3.5). 
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Figure 3.12: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and Neural Network with Boolean inputs using weight 
decay (NN-Boolean-Decay) when only single words were used to identify rel­
evant articles. The average difference is 3.16%, as shown by the dashed line. 
This is statistically significant far beyond the 0.1 % confidence level (Z=11, see 
Section 3.5). 
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Figure 3.13: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and Neural Networks with numeric inputs (NN­
Numeric) when only single words were used to identify relevant articles. 
The average difference is 8.66%, as shown by the dashed line. This is statisti­
cally significant far beyond the 0.1% confidence level (Z=22, see Section 3.5). 
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NB-CV Accuracy Minus NN-Numeric-Decay Accuracy 
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Figure 3.14: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and Neural Networks with numeric inputs using weight 
decay (NN-Numeric-Decay) when only single words were used to identify 
relevant articles. The average difference is 6.56%, as shown by the dashed 
line. This is statistically significant far beyond the 0.1% confidence level 
(Z=17, see Section 3.5). 
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Figure 3.15: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and CART with Boolean inputs (CART-Boolean) when 
only single words were used to identify relevant articles. The average differ­
ence is 3.82%, as shown by the dashed line. This is statistically significant far 
beyond the 0.1% confidence level (Z=15, see Section 3.5). 
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NB-CV Accuracy Minus CART-Numeric Accuracy 
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Figure 3.16: Difference in accuracy between Naive Bayes using Cross 
Validation (NB-CV) and CART with numeric inputs (CART-Numeric) when 
only single words were used to identify relevant articles. The average differ­
ence is 8.71 %, as shown by the dashed line. This is statistically significant far 
beyond the 0.1% confidence level (Z=34, see Section 3.5). 
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ITRule CV-J: Accuracy with Phrases Minus Accuracy with Single Words 
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Figure 3.17: Difference in accuracy of Cross Validation using the J-measure 
(ITRule CV-J) between using phrases without stop words and using only sin­
gle words to identify relevant articles. The average difference is 1.37%, as 
shown by the dashed line. This is statistically significant far beyond the 0.1% 
confidence level (Z=6.8, see Section 3.5). 
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NB-CV: Accuracy with Phrases Minus Accuracy with Single Words 
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Figure 3.18: Difference in accuracy of Naive Bayes using Cross Validation 
(NB-CV) between using phrases without stop words and using only single 
words to identify relevant articles. The average difference is 0.58%, as shown 
by the dashed line. This is statistically significant far beyond the 0.1% confi­
dence level (Z=4.7, see Section 3.5). 
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Figure 3.19: Difference in accuracy of the linear support vector machine 
(SVM) between using phrases without stop words and using only single 
words to identify relevant articles. The average difference is 0.66%, as shown 
by the dashed line. This is statistically significant at the 0.2% confidence level 
(Z=3.2, see Section 3.5). 
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NN-Boolean-Decay: Accuracy with Phrases Minus Accuracy with Single 
Words 

45 

40 r-

35 r-

30 r-

25 r-

20 -
15 -
10 - • 

• • 
5 - • • • • • • • • - ~ ----- • • - . ....." • • - - -.- ...--•• • 0 - • • • • 

-5 - • 
-10 -
-15 -
-20 

0 5 10 15 20 25 30 35 40 

Data Set Index 

-
-
-
-
-
-
-
-

-
-
-

45 

Figure 3.20: Difference in accuracy of Neural Networks with Boolean inputs 
using weight decay (NN-Boolean-Decay) between using phrases without stop 
words and using only single words to identify relevant articles. The average 
difference is 1.98%, as shown by the dashed line. This is statistically signifi­
cant far beyond the 0.1% confidence level (Z=6.8, see Section 3.5). 
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CART-Boolean: Accuracy with Phrases Minus Accuracy with Single Words 
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Figure 3.21: Difference in accuracy of CART with Boolean inputs (CART­
Boolean) between using phrases without stop words and using only single 
words to identify relevant articles. The average difference is 1.81%, as shown 
by the dashed line. This is statistically significant far beyond the 0.1% confi­
dence level (Z=5.4, see Section 3.5). 
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NB-CV: Accuracy on Large Data Set Minus Accuracy on Small Data Set 
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Figure 3.22: Improvement in accuracy of Naive Bayes using Cross Validation 
(NB-CV) when adding more training examples. The average difference is 
2.92%, as shown by the dashed line. As explained in the Section 4.2, NB-CV 
was chosen for use in Poirot. 
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NB-CV: Accuracy vs. Training Set Size for "acq" Topic 
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Figure 3.23: Improvement in accuracy of Naive Bayes using Cross Validation 
(NB-CV) as a function of training set size for the "acq" topic which deals with 
corporate acqusitions and mergers. For each training set size, 20 independent 
data sets were generated. The data point represents the average accuracy on 
the test data, while the error bar indicates the standard deviation of the accu­
racy due to the variations in the training data. As explained in the Section 
4.2, NB-CV was chosen for use in Poirot. 
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NB-CV: Accuracy vs. Training Set Size for "money supply" Topic 
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Figure 3.24: Improvement in accuracy of Naive Bayes using Cross Validation 
(NB-CV) as a function of training set size for the "money supply" topic which 
deals with Federal monetary policy. For each training set size, 20 indepen­
dent data sets were generated. The data point represents the average accuracy 
on the test data, while the error bar indicates the standard deviation of the ac­
curacy due to the variations in the training data. As explained in Section 4.2, 
NB-CV was chosen for use in Poirot. 



>.. 
u 
ro 
I-< 
;:::J 
U 
U 

-< ..... 
~ 
Cl) 
u 
I-< 
Cl) 

p... 
~ ..... 
Cl) 
u 
~ 
Cl) 
I-< 
Cl) ....... ....... ..... 
0 

118 

ITRule CV-J: Accuracy with Relative Misclassification Cost Equal to Two 
Minus Accuracy with Relative Misclassification Cost Equal to One 
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Figure 3.25: Difference in accuracy of Cross Validation using the J-measure 
(ITRule CV-J) between using a relative misclassification cost of two and one. 
Misclassification costs are discussed in Section 3.2. The average difference is 
0.019%. 
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ITRule CV-J: Accuracy with Relative Misclassification Cost Equal to Two 
Minus Accuracy with Relative Misclassification Cost Equal to Four 
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Figure 3.26: Difference in accuracy of Cross Validation using the J-measure 
(ITRule CV-J) between using a relative misclassification cost of two and four. 
Misclassification costs are discussed in Section 3.2. The average difference is 
0.012%. 
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NB-CV: Accuracy with Relative Misclassification Cost Equal to Two Minus 
Accuracy with Relative Misclassification Cost Equal to One 
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Figure 3.27: Difference in accuracy of Naive Bayes using Cross Validation 
(NB-CV) between using a relative misclassification cost of two and one. 
Misclassification costs are discussed in Section 3.2. The average difference is 
0.54%. 
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NB-CV: Accuracy with Relative Misclassification Cost Equal to Two Minus 
Accuracy with Relative Misclassification Cost Equal to Four 
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Figure 3.28: Difference in accuracy of Naive Bayes using Cross Validation 
(NB-CV) between using a relative misclassification cost of two and four. 
Misclassification costs are discussed in Section 3.2. The average difference is 
0.57%. 
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ITRule CV -J: Accuracy with Unfiltered Word Lists Minus 
Accuracy with Filtered Word Lists 
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Figure 3.29: Difference in accuracy of Cross Validation using the J-measure 
(ITRule CV -J) between using unfiltered and filtered word lists to identify rele­
vant articles. The average difference is -0.36%. 
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NB-CV: Accuracy with Unfiltered Word Lists Minus 
Accuracy with Filtered Word Lists 
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Figure 3.30: Difference in accuracy of Naive Bayes using Cross Validation 
(NB-CV) between using unfiltered and filtered word lists to identify relevant 
articles. The average difference is -0.53%. 
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ITRule CV-J: Accuracy with Unstemmed Words Minus 
Accuracy with Stemmed Words 
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Figure 3.31: Difference in accuracy of Cross Validation using the J-measure 
(ITRule CV-J) between using unstemmed and stemmed words to identify rel­
evant articles. The average difference is -0.20%. 
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NB-CV: Accuracy with Unstemmed Words Minus 
Accuracy with Stemmed Words 
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Figure 3.32: Difference in accuracy of Naive Bayes using Cross Validation 
(NB-CV) between using unstemmed and stemmed words to identify relevant 
articles. The average difference is -0.33%. 
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NB-CV: Accuracy with Unstemmed Words Minus 
Accuracy with Stemmed Words 

. 

1 2 3 4 5 6 7 8 9 

Topic Index 

-

-

-

-

-

-

10 11 

Figure 3.33: Difference in accuracy of Naive Bayes using Cross Validation 
(NB-CV) between using unstemmed and stemmed words to identify relevant 
articles. For each topic, 20 independent data sets were generated. The data 
point represents the difference in average accuracy on the test data, while the 
error bar indicates the standard deviation of the difference in accuracy. The 
average difference in accuracy over all 11 topics is -0.52%. As explained in 
the Section 4.2, NB-CV was chosen for use in Poirot. 
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Run time of the NB-CV algorithm 
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Figure 3.34: The discrete points show the measured run times of the NB-CV 
algorithm as a function of the number of training examples. The solid line 
has the slope of N train- By comparing the data points and the line, it is evi­
dent that the NB-CV run time is approximately proportional to N train-
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Run time of the CART-Boolean algorithm 
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Figure 3.35: The discrete points show the measured run times of the CART­
Boolean algorithm as a function of the number of training examples. The 
solid line has the slope of YNtrain. By comparing the data points and the line, 
it appears that the CART run time is approximately proportional to Y N train· 
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Run time of the SVM algorithm when using 100 words and phrases 
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Figure 3.36: The discrete points show the measured run times of the SVM al­
gorithm as a function of the number of training examples. The solid line has 
the slope of N train" By comparing the data points and the line, it is evident 
that the SVM run time is approximately proportional to N train" Since cross 
validation was done by a separate program and was therefore very slow, as ex­
plained in Section 3.4.5, the time required for this computation was not mea­
sured. Instead, the run time was measured for the case when the top 100 
words and phrases were used as input variables. If all the computations were 
done in one program, cross validation would, in the worst case, produce an 
additional factor of N train in the computational complexity. 
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Appendix 3-A: List of stop words 

a being et most study 
about below few much such 
above best for must take 
according better forward my taken 
across between from near takes 
actual beyond further nearly taking 
added birthday get next than 
after both gIve not that 
against but given now the 
ahead by giving of their 
all can has off them 
almost certain have on then 
alone come having only there 
along comes his onto therefrom 
also coming honor or these 
among completely how other they 
amongst concerning in our this 
an consider inside out those 
and considered instead outside through 
and-or considering into over throughout 
and/or consisting IS overall to 
anon de it per together 
another department items possibly toward 
any der its pt towards 
are despite just put under 
arising discussion let really undergoing 
around do lets regarding up 
as does little reprinted upon 
at doesnt look same upward 
award doing looks seen various 
away down made several versus 
be dr make should very 
because du makes shown via 
become due making since vol 
becomes during many so-called vols 
been each meet some vs 
before either meets spp was 
behind especially more studies way 
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ways 
we 
were 
what 
whats 
when 
where 
which 
while 
whither 
who 
whom 
whos 
whose 
why 
with 
within 
without 
yet 
you 
your 
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Appendix 3-B: The analytical expression for computing the precisionlrecall 

breakeven point (PRBEP) based on the Probability of 

Relevance (PRR) algorithm 

The Probability of Relevance (PRR) formula for computing the 

precision/recall breakeven point is derived in Raghavan et al. (1989). Only a 

short summary is presented here. 

Elaborating on the discussion in Section 3.7, assume that the threshold 

for predicting "relevant" is initially set larger than any value in the sorted list 

of test articles, and that this threshold is then lowered so that it is placed 

successively between each pair of adjacent values in this sorted list. In most 

cases, the list will actually consist of clusters of the same value, so lowering 

the threshold by one step actually moves past several test articles instead of 

only one. Let the numbers of relevant and irrelevant articles above the 

threshold be represented by nr,prev and nr,prev, respectively, and the numbers 

of relevant and irrelevant articles in the cluster, C, directly below the 

threshold be represented byn r and ny, respectively. If the precision is greater 

than the recall when the threshold is above C and visa versa when the 

threshold is below C, and if N r denotes the total number of relevant articles 

in the test data, then the PRR formula for computing the breakeven point 

where the precision, P, is equal to the recall, R, can be derived from Theorem 

3.5 in Raghavan et al. (1989). The result is: 

P=R= 
N _ nr,prev_ 

r - nr,prev + nr nr 

N r (~: + 1) 
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Chapter 4 

The design of the autonomous agent Poirot 
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4.0. Introduction 

The primary goal of the research presented in this thesis was to develop 

an autonomous computer program that can help W orId Wide Web users stay 

up to date on any topic of interest.1 The resulting system is called Poirot be­

cause in a sense, it acts like a dedicated private investigator. It is designed to 

repeatedly search the W orId Wide Web and interact with the user in order to 

learn why particular web pages are relevant and others are not. A block dia­

gram of the system is shown in Figure 4.1.2 

4.1. An example of a brief session with Poirot 

The simplest way to explain how the user can interact with Poi rot is to 

provide an example. Figures 4.2 through 4.7 show screen shots from an actu­

al session with Poirot. The goal of the session was to find web pages related 

to Dr. Rodney Goodman and his research at the California Institute of 

Technology. In order to make the task challenging, the user asked Poirot to 

search for web pages containing only the word "Goodman," as illustrated in 

Figure 4.2. After Poirot displayed the initial search results depicted in Figure 

4.3, the user studied a few of the web pages and rated them as either relevant 

(+) or irrelevant (-), as shown in Figure 4.4. Figure 4.5 shows the window 

after the user requested that Poirot train its classifier on the rated pages. Note 

that in this case, only the relevant pages received a high score from the re-

1 As an example, medical doctors might use the program to keep track of new developments 
in their field, including both legitimate new treatments that might be recommended to their 
patients and drugsthat should be avoided. Poirot's autonomy should be particularly valuable 
in this case because using it would free physicians from having to search the Web manually and 
thereby allow them to spend more time with their patients. 

2 The software currently runs only on UNIX systems. The algorithms are not system depen­
dent, however, so the only obstacle to implementing Poirot on Macintosh and Windows systems 
is the effort required to translate the source code. 
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suIting classifier. The words chosen by Poirot for use In the classifier are 

shown in Figure 4.6. The user subsequently requested that Poirot search for 

web pages matching these new words. The results of this search are displayed 

in Figure 4.7. Note that the top ranked pages are all relevant to Dr. 

Goodman's research, i.e., his projects, his collaborators, and the Caltech 

Electrical Engineering Department. It is also important to note that these 

pages are not limited to Dr. Goodman personally, i.e., that the results are 

much broader than the initial keyword "Goodman." 

4.1.1. General description of the user's interaction with Poirot 

Before Poirot can start on a new topic, it must be provided with key­

words pertaining to that topic, as illustrated in Figure 4.2. Poi rot sends the 

keywords to several search engines3 in order to obtain web pages for the user 

to rate. If the user knows of other relevant web pages, they can be added 

manually. 

Once Poirot has downloaded the web pages, it displays a list of their titles 

in a separate window devoted to the topic. An example is shown in Figure 

4.3. The user can double click on an item in the list to display the correspond­

ing web page in a web browser. To indicate that a page is or is not relevant, 

the user must rate the page as + or -, respectively, in Poirot's window, as il-

lustrated in Figure 4.4. If the user follows a link from one of these pages and 

finds another relevant page, this can be added manually. A third designation, 

"Index," denoted by 0, is also provided to distinguish pages that consist pri­

marily of links to other pages. Instead of rating these index pages, Poirot uses 

3 Several search engines are required because each engine covers only a small fraction of the 
web (Selberg and Etzioni, 1995; Lawrence and Giles, 1998). 
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them as starting points to search for additional relevant pages. The use of the 

Index designation is demonstrated in Figure 4.7. 

The next step is for Poirot to train a classifier on the pages that have been 

rated. Simultaneously, it also follows the links from the rated web pages and 

index pages in search of other relevant pages. Once the training is complete, 

Poirot uses the words from the classifier to retrieve more pages from the web 

search engines. Finally, Poirot rates all the newly discovered pages. 

Since downloading and analyzing many web pages can potentially take 

several hours, the process is usually performed at night so the results will be 

available to the user the next morning. Since there is less traffic on the 

Internet at night, this strategy has the additional benefit that the downloading 

will require less computer time than during the day. The next morning, 

when the user starts Poirot again, it presents the list of all the newly rated 

pages so the user can study them and then provide more feedback. An exam­

ple of the results is shown in Figure 4.7. 

The process outlined above can be repeated indefinitely. The classifier is 

only retrained if the user changes any of the ratings or adds new pages. The 

web search engines are only contacted if the list of words used by the classifier 

changes significantly, i.e., more than 10% of the words are different, or if they 

haven't been contacted within a user specified interval, e.g., one month. In 

addition, known web pages are periodically retrieved and checked for 

changes. As discussed in Section 4.3, a separate rating indicates whether or 

not the changes are important. 
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Poirot Core Poirot Interfaces Outside World 

I I 
User Interface ... Web Browser ... Web Browser I Interface 

I ~ 

I I 
.4~ 

I I 

" 
I I 

I I 
Topic - ... Web Page - ... Web 

Manager I Downloader I Server 
I I 

J 
I 

" 
I I 

I I 
Naive Bayes 

I 
Search Engine - ... Search 

Classifier Interface I Engine 
I I 

Figure 4.1: System block diagram for the autonomous agent called Poirot 
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Figure 4.2: Screen shot from Poirot showing the dialog window where the 
user enters one or more initial keywords describing a topic of interest 
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Gun Show.lndex 
Ida Long Goodman Memorial Library - st. John, KS 
iDomain-\lIIwr rfo .com .. . .. 

Jim Goodman's Home Page 
MutuaIFunds-. IGBeutel .· GoOdmanFunds 
personal Page- ErikGoodman 
Professor RodneyM.F. Goodman 
Professor Rodney M.Goodman 
Scientology: LeisaGoodman: Media Director 
Scientology: LeisaGoodman: Media Director 
This site has moved · ~ The Fans of John Goodman 
Tim Goodman I eXaminer.com 
Washi m: Degrees of 
W~lc rn~nin MUSiC dman 

N 
N 
N 
N 
N 
N 
N 
N 1 month 
N 1 month 
N 1 month 
N 1 month 
N 1 month 
N 1 month 
N 1 month 
N 1 month 

Figure 4.3: Screen shot showing the results of Poirot's initial search for web 
pages containing the word "Goodman." The pages are listed in alphabetical 
order by title. The "N" in the Status column stands for "New" and indicates 
that the user has not yet viewed the page with a web browser. The values in 
the "Check" and "Interval" columns specify how often Poirot should check 
for changes in each web page. 
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. ' Goodman 
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; TopicS File Edit .' Topic .. Preferences ~ Help " ,. 

Goodman Family Home Page 
Goodman Oaks Church of Christ 
Gun Show Index 

.. .. 

Ida Long Goodman Memorial Library - St John, KS 
iDomain - www.rfo.com 
Jim Goodman's Horne Page 
Mutual Funds - IG Beutel Goodman Funds 
Personal Page - Erik Goodman 

+ Professor Rodney M, F, Goodman 
+ Professor Rodney M, Goodman 

Scientology: Leisa Goodman: Media Director 
Scientology: Lei sa Goodman: Media Director 
This site has moved - The Fans of John Goodman 
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.. ,._,'. ......'" ... ' ...... ,.. " ... .'. 
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N 1 month I~ , 
N 1 month 
N 1 month 
N 1 month 
N 1 month 

1 month 
N 

N 
N 
N 
N 
N 
N 

1 month 
1 month 
1 month 
1 month 
1 month 
1 month 
1 month 
1 month 
1 month ,~ 

~ 
1 month /A 

I 

Figure 4.4: Screen shot from Poirot after the user has studied and rated a few 
of the web pages by placing + and - symbols in the Opinion column 
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Figure 4.5: Screen shot from Poirot after it has constructed a classifier based 
on the ratings provided by the user in the Opinion column. The words cho­
sen by the classifier are shown in Figure 4.6. The numeric values in the Score 
column are the output from the classifier. The pages are sorted in descending 
order of this rating. Note that the pages rated + by the user have the highest 
numeric rating, and that the pages rated - by the user have a lower numeric 
rating. As explained in Section 4.2.1, a numeric rating greater than five indi­
cates that the web page is relevant. 
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expected accuracy (approximate): 100% 

prior p{relevant) = 0.103448 

"electrical engineering" 
if not there: p{relevant) = 0.0359801 
if there: p{relevant) = 0.935484 

"information processing" 
if not there: p{relevant) = 0.0359801 
if there: p(relevant) = 0.935484 

"microsystems" 
if not there: 
if there: 

"rodney" 
if not there: 
if there: 

p{relevant) 0.0359801 
p{relevant) = 0.935484 

p{relevant) = 0.0359801 
p{relevant) = 0.935484 

"rodney goodman" 
if not there: p{relevant) = 0.0359801 
if there: p(relevant) = 0.935484 

"signal" 
if not there: 
if there: 

p{relevant) = 0.0359801 
p{relevant) = 0.935484 

"signal processing" 
if not there: p{relevant) 0.0359801 
if there: p{relevant) = 0.935484 

"vlsi" 
if not there: 
if there: 

"information" 
if not there: 
if there: 

"work" 
if not there: 
if there: 

"research" 
if not there : 
if there: 

p(relevant) 0.0359801 
p(relevant) 0.935484 

p{relevant) = 0.0584677 
p{relevant) = 0.215881 

p(relevant) = 0.0467742 
p{relevant) = 0.311828 

p(relevant) 0 . 0550285 
p(relevant) = 0.233871 

Figure 4.6: Output from Poi rot showing all the words and phrases used by 
the classifier that was constructed from the user's feedback displayed in 
Figure 4.4. Also shown are the probabilities that a web page is relevant if the 
word or phrase enclosed in quotation marks is present or absent. 
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Professor· RodneyM. F. Goodman 
10 ProfessorHodney M.Goodman 
10 TheWWW Virtual Library: Computing 
10 Title: ActivEl Drag Reduction using Neural Networks 
10 ~ lEE Booksc:Te.lecommunicationsSeries 
10 '0 IEEE CAS Society Technical Comrnittees 
10 Digital Signal Processing 
10 The DATA CenterRoster 
10 Christof Koch's Home Page 
10 David G. Stork,MLP group at the California Research Center 
10 Signal Processing and Artificial Neural Networks Lab,(SPANN LAB) Dept 
10 ECAL97 - "-"- Papers to appear in Proceedings 
1 0 ntrol · automation. 

Figure 4.7: Screen shot showing the results of Poirot's second search for web 
pages. This search used the words and phrases from the classifier shown in 
Figure 4.6 instead of the original keywords. The numeric values in the Score 
column are the output from Poirot's classifier. Note that both pages which 
the user rated as + are near the top of the list, and that all the pages that are 
shown pertain to Dr. Goodman's research interests. Also, note that the user 
has marked several of the items as index pages. These provide excellent start­
ing points for further exploration of the topic. 
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4.1.2. A note on obtaining feedback from the user 

In order to minimize the number of questions that the user must an­

swer, some systems have been designed to use indirect methods of measuring 

the relevance of a web page. One popular approach is to assume that the rele­

vance is proportional to the amount of time that the user spends studying 

the page (Morita and Shinoda, 1994; Voigt, 1995; Mladenic, 1996; Nichols, 

1998). However, since Poi rot does not run inside web browsers, there is no 

way to measure this time interval. Moreover, the question of how the time 

is spent cannot be answered without actually asking the user. The user might 

for instance have been distracted or simply decided to take a break instead of 

studying the web page. If the user did actually spend the time studying the 

page, however, it might simply have taken a while to decide that it was not 

relevant, or the user might have spent the time because it was relevant to a 

different topic. Conversely, if the user does not spend much time on a page, 

it might still be relevant, but the user might have decided to follow an inter­

esting link near the top of the page. These uncertainties add an unacceptable 

amount of noise to the training data. Manual rating by the user is therefore 

the most reliable approach. It should be noted, however, that if an accurate 

method of obtaining implicit feedback can be found, then the NB-CV algo­

rithm will be able to use this information to construct an accurate classifier. 
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4.2. Description of Poirot's page rating algorithm 

In order to simplify the problem, Poirot's learning algorithm is designed 

to work on only one topic at a time. Web pages that previously have been 

rated by the user as germane to other topics are utilized as additional negative 

training examples for the current topic. This approach eliminates the need to 

maintain a list of irrelevant web pages for each topic. 

The experimental results presented in the previous chapter show that 

the accuracies of the NB-CV, ITRule CV-J, and SVM algorithms are essential­

ly identical. Moreover, all three perform significantly better than the other 

algorithms that were tested. Thus, from this stand point, one could use any 

of them in Poirot.4 However, as explained in Section 3.4.5, the implementa­

tion of the SVM algorithm is very slow because cross validation is performed 

by a separate program. The current implementation of the IT Rule CV-J algo­

rithm is also slow because it is disk-based in order to allow it to be used on ex-

tremely large data sets. Rewriting either the SVM or the ITRule software 

would require a considerable amount of work. Thus, since Poirot only needs 

to handle relatively small data sets, it uses the much faster NB-CV imple­

mentation that was employed during the experiments discussed in Chapter 3. 

In the web pages that the user has rated, all single words and all two and 

three word phrases are potential input features. The classifier uses the pres­

ence or absence of the words and phrases chosen by cross validation to decide 

whether or not a new page is likely to be relevant or irrelevant. Depending 

on the probabilities that are calculated from the training data, the presence of 

a word or phrase may increase or decrease the likelihood of relevancy. 

4 As discussed in Section 3.4.2, NB-CV and ITRule CV-J can be considered variants of the 
same algorithm. 
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It should be noted that it is the NB-CV algorithm which makes the final 

decision concerning which words and phrases to use. Thus, the classifier is 

not constrained to use the keywords initially provided by the users since there 

is no guarantee that these words are the best features for discriminating be­

tween relevant and irrelevant pages. In some rare situations, the initial key­

words might not even occur in the pages that the user has rated, in which 

case no statistics could even be computed. However, in practice, the key­

words will almost always occur in the rated pages. Thus, the keywords will 

usually be included in the list of potential input features. 

Poirot's learning algorithm only considers the unformatted text of the 

web page, i.e., fonts, styles, and paragraph breaks are ignored. Some studies 

have attempted to use formatting to select the important words from each 

web page (Krulwich and Burkey, 1997). There are two reasons why this ap­

proach is not used in Poirot. First, formatting tends to vary widely between 

different web sites and is non-existent in plain text (.txt) web pages. Second, 

rigorous statistical analysis is a far more robust method of choosing words. 

Headlines and other emphasized words are only meant to provide visual 

cues while the user is reading the web page. A word may be emphasized for a 

wide variety of reasons including such trivial situations as italicizing "and" 

between two statements that are related in an unexpected way. Thus, there is 

no guarantee that such words are correlated with the reader's judgment of 

relevance. At best, they may correlate with the author's interests. A direction 

for future research might be to explore the possibility of using emphasis to 

give particular words more weight by, for example, treating them as if they 

5 As demonstrated by the example session in Section 4.1, this can be very important for 
serendipity, i.e., making fortuitous, relevant discoveries beyond the scope of the original inten­
tion and related keywords. 
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had been repeated several times, with the number of repetitions proportional 

to the level of emphasis. However, since none of the classifiers that were 

tested in Chapter 3 were able to use word frequency effectively, and since the 

Reuters-21578 data set which was used for most of the experiments did not 

contain any formatting information, this issue was not explored. 

Poirot's learning algorithm also ignores the images on a web page. 

Analyzing the images is beyond the scope of this thesis because it is an entire­

ly different field of research. At the present time, the field is considered to be 

wide open, and no proven algorithm is available for use in Poirot. However, 

ignoring images is not a serious deficiency as long as the web page includes 

captions or other text describing the images. 

4.2.1. Computing the rating displayed in the Score column 

Misclassifying a relevant page is normally considered to be more serious 

than misclassifying an irrelevant page. Poirot is therefore designed to mini­

mize the amount of trouble caused by its mistakes rather than merely mini­

mizing the number of mistakes.6 Mathematically, one can define the amount 

of trouble caused by misclassifying an irrelevant page to be one and then use 

the positive parameter C to represent the amount of trouble caused by mis­

classifying a relevant page. Under the assumption that the probabilities pro­

duced by the classifier are correct, the expected amount of trouble that will be 

caused by predicting "relevant" is O·p(r Ipage) + l·p(r Ipage), while the expect­

ed amount of trouble that will be caused by predicting "irrelevant" is 

Cp(r Ipage) + O·p(r Ipage). Here, p(r Ipage) represents the probability of the 

6 This is a special case of the general concept of risk minimization discussed by Duda and 
Hart (1973). 
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web page being relevant, while p(r Ipage) represents the probability of the 

page being irrelevant. Poirot minimizes the expected amount of trouble by 

predicting "relevant" when this decision will cause less trouble, i.e., when 

p(r I page) < C p(r I page) 

This formula is intuitively reasonable because when the value of C is in­

creased, a larger range of the output probability, p(r Ipage), is mapped to the 

decision "relevant." Thus, the page is only classified as irrelevant if this is 

overwhelmingly likely. Based on the results presented in Section 3.5.3, C was 

set equal to two in Poirot. 

Since C is not equal to one, the breakpoint between "relevant" and "not 

relevant" does not occur at the midpoint of the classifier's output, i.e., not 

where p(r Ipage) is equal to p(r Ipage). In order to compute a symmetric rating 

between zero and ten that can be displayed to the user, Poirot first defines the 

function: 

Rl = C p(r I page) - p(r I page) 

A web page is considered to be relevant when the value of this function 

is greater than zero, i.e., when p(r Ipage) > 1/(C+1). Since the value of R1lies 

in the interval [-l,C], an intermediate function, R 2, is introduced to shift and 

scale the value Rl so that the result lies in the interval [0,1]: 

Rl+1 (Cp(rlpage)-p(rlpage»)+l (I ) 
R2 = C + 1 = C + 1 = P r page 

If one defines n=C+l, then the breakpoint between "relevant" and "not 

relevant" occurs when R2 = lin. In order to shift this breakpoint to five and 

achieve symmetry in the interval [0, 10], a parabola was fitted to the three 

points (0,0), (lin, 5), and (1, 10). This provides a smooth transformation of 
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the interval [0, 1] to [0, 10]. The resulting rating function is: 

(
n (2-n)Ri+(n2-2)R2) 5 

R = 10 2 (n-l) = 2 [7 - 3 p(r I page)] p(r I page) 

The rounded off value of R is the page rating displayed to the user in the 

Score column, as illustrated in Figures 4.5 and 4.7. At the breakpoint between 

"relevant" and "not relevant," R=5, and p(r Ipage)=1/3. 

4.3. Reporting significant changes to a web page since it was last visited 

The previous sections have dealt with the problem of how to rate a 

newly discovered web page. These are the ratings displayed in the Score 

column in Figures 4.5 and 4.7. Since the World Wide Web is extremly dy­

namic, Poi rot must also periodically revisit web pages to check for significant 

changes, i.e., addition, deletion, or modification of relevant information. 

However, insignificant modifications such as changes in font or spelling and 

grammar corrections should not be reported. In order to filter out trivial al­

terations, the changes to the web page are given a rating, Rchange' Note that 

this change rating is different from the rating assigned to the entire page. 

When Rchange is non-zero, it is displayed in the Status column using the 

transformation discussed in Section 4.2.1, as illustrated in Figure 4.8.7 

The change in the rating of the entire page, Rnew-Rold' is usually the 

most important contribution to Rchange' However, significant additions and 

deletions must also be taken into account because it is possible for Rnew and 

7 The number of new links on the web page to other web pages, images, PostScript files, etc., 
is also often of interest, but for different reasons, so this is displayed separately in the Status 
column, as illustrated in Figure 4.8. 
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RaId to be nearly equaJ.8 Poirot therefore computes Rchange as the maximum of 

the change in the rating of the entire page, the rating of the text that was 

added, if any, and the rating of the text that was removed, if ant: 

Rchange = max ( IRnew - Ral~' w(.t1N add) Radd, w(.t1N del) Rdel ) 
N new Nald 

Here, Rnew is the rating of the new version of the page, RaId is the rating 

of the old version of the page, Radd is the rating of the added text, and Rdel is 

the rating of the deleted text. The "max" function is used because each of the 

three terms represents a separate reason for the user to re-read the web page, 

and one good reason is enough to warrant bringing the page to the user's at­

tention. The absolute value is used in the first term because a large decrease 

in relevance may be just as important as a large increase. 

The function w is a weighing function that reduces the effect of Radd and 

Rdel when the number of words that were added to the new version, .t1N add' is 

small relative to the total number of words in the new version, N new' or 

when the number of words that were deleted from the old version, .t1N del' is 

small relative to the total number of words in the old version, N old, respec­

tively. As an example of why this is appropriate, the addition of a sentence to 

a long thesis is probably not nearly as important as the addition of a para­

graph to a short abstract. Since additions and deletions may be equally inter-

BTwo examples of a change that does not affect the overall rating are (1) significant addi­
tions to a page that already has a high rating and (2) significant removals that leave behind 
enough keywords so that the rating remains high. 

9 The current implementation of Poirot uses the UNIX utility program called "diff" to find 
the text that was added or removed. A paragraph formatted version of the text is compared, 
not the raw Hypertext Mark-up Language (HTML) source code. When "diff" reports that a 
paragraph has changed, this is treated as an addition if the new text is morethan twice the 
length of the old text, and a removal if the old text is more than twice the length of the new 
text. 
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esting, the weights for Radd and Rdel have the same form. The functional 

form that Poirot uses for w is: 

w(x) 
o ~ x < Xo 

The value of Xo is set to 0.1 so that Radd and Rdel are only reduced if the total 

size of the additions or deletions is less than 10% of the total length of the 

web page. 

Unfortunately, this method of computing Rchange cannot detect all signif­

icant changes. As an example, the addition or removal of the word "not" can 

be quite significant, but since "not" is a so called stop word that Poirot ig­

nores, this change will never be considered significant. lO More generally, it is 

often possible to rewrite a paragraph so that it contains the same keywords 

but says something very different. Without a complete understanding of the 

text, such changes cannot be correctly labeled as significant. The only solu­

tion appears to be to display Rchange for all pages that have changed and to 

warn the user that a low value does not guarantee that the changes are not 

significant. This is therefore the approach used in the design of Poirot. 

It is also worth noting that web pages may change at different rates. 

Some pages change suddenly because the maintainer decides to restructure, 

rewrite, or even replace the entire text. Other pages change gradually as the 

maintainer adds or modifies information bit by bit over a long period of time. 

10 One could check for the special case of "not" occurring in front of a keyword, but there are 
two problems with this approach. First, English is flexible enough to allow one to obtain the 
same meaning by placing "not" somewhere else in the sentence. The second and more serious 
problem is that one will never run out of special cases that need to be fixed. This endless spiral 
leads inevitably to the topic of Natural Language Processing (NLP). However, since this is a 
very different research problem, it was deemed to be beyond the scope of this thesis. 
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In order to correctly report the cumulative effect of gradual changes, Poirot 

calculates Rchange based on the changes from the user's last visit instead of 

Poirot's last visit. ll In this way, a page that repeatedly undergoes minor 

changes may eventually acquire a large Rchange and thus rise to the top of the 

list where it will be noticed by the user. 

10 
10 
10 
10 

10 

rnod ifiedtoTe levant 10 
+ relevant modification counted as addedtext, same links 10 

rele'./ant modification notcounted as added text 10 
+ relevant modification notcounted as added text, 2 new links 1 

lnew link 
+ added irrelevant text 

added irrele'/snt text 

2 
1 

1 month 
1 month 
1 month 
1 month 
1 month 
1 month 
1 month 

Figure 4.8: Screen shot from Poirot showing how the rating, Rchange' which is 
assigned to the changes in each web page is displayed on the left-hand side of 
the Status column. Rchange is different from the rating assigned to the entire 
page which is displayed in the Score column. Note that the number of new 
links is displayed separately on the right-hand side of the Status column. 
Also note that the pages are sorted by the value of Rchange' rather than by the 
main rating displayed in the Score column. 

Unlike the other screen shots, this one does use actual web pages. Since it is 
not possible to modify web pages created by somebody else, it was necessary to 
create a set of simple test pages. The Title column in the above screen shot is 
used to explain the changes that were made to each test page so that the val­
ues displayed in the Status column can be interpreted correctly. 

11 The user is assumed to have visited a page if he double clicks on the page in Poirot's list, 
and at least 30 seconds elapse before he double clicks on another page in the list. 
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4.4. Sharing relevant pages with other Poirot users via index pages 

The previous sections have discussed the problem of filtering the results 

returned by web search engines. Filtering is necessary because search engines 

typically return more irrelevant pages than relevant pages. If one instead 

were able to search web pages discovered by other users with similar interests, 

then the signal-to-noise ratio would presumably be much higher since more 

pages would be relevant. 

One challenge associated with this method is to disseminate each user's 

discoveries. Poirot provides a very simple, yet powerful mechanism to ac­

complish this task. For each topic, Poirot creates an index page ranking all 

the discovered web pages. Other Poirot users may find this topic index page 

via a web search engine or by personal communication. If they add the page 

to their own lists of web pages on the topic and designate the page as an index 

page, i.e. 0, Poirot will automatically rate all the pages mentioned and watch 

for the addition of links to other pages. 12 

In order to make it easy for search engines to find topic index pages creat­

ed by Poi rot, the program generates a master index web page that contains 

links to all the individual topic index pages. A user only has to add a single 

link from his home page to this master index page in order to provide full ac­

cess to all the topics.13 

12 Poirot "signs" the index pages that it creates by including its name in the meta informa­
tion, as illustrated in Figure 4.9. This allows Poirot to recognize these pages when they are re­
turned by a search engine. Poirot can then automatically label the pages as index pages in­
stead of having to wait for the user to study them. 

13 For this method to work, the user's home page mustbe easily locatable by search engines. 
Poirot cannot enforce this, butit is not a problem because users normally have a strongincentive 
to ensure that the requirement is satisfied. 
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The likelihood that a search engine will return the topic index page in 

response to a query from another Poirot user is improved by explicitly includ­

ing the words employed by the classifier on the index page via the special 

"meta" tag, as illustrated in Figure 4.9. Most search engines give significant 

weight to such words. In addition, on each index page, Poirot uses the title of 

each listed web page to anchor the link to the actual web page, as depicted in 

Figures 4.9 and 4.10. These titles often include words that are strongly corre­

lated with the topic, thereby further increasing the probability that the index 

page will be returned during a search. 

In addition to the improvement in the signal-to-noise ratio, there is an­

other reason why using an index page created by Poirot instead of the results 

from a search engine can significantly improve the accuracy of Poirot's rat­

ings. In general, the meaning of a word depends on the context in which it is 

used. This is the primary theoretical objection to computing ratings based 

only on the presence or absence of words.14 Including phrases helps some­

what since they tend to have fewer possible meanings. However, the best 

way to ensure that a word has a particular meaning is to restrict the topic of 

discussion. Utilizing index pages created by Poirot users with similar inter­

ests enforces this constraint. Since the words used by the classifier are likely 

to have the desired meaning, Poirot is less likely to make mistakes in this 

case than when evaluating web pages returned from a keyword search of all 

the web pages known to a search engine. 

14 The results presented in Chapter 3 indicate that this objection is apparently not a serious 
problem in practice. 
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Poirot's method of sharing discoveries can also aid serendipity. Each 

user will have a unique approach to a given topic which will be evident from 

the contents of the index page. By presenting the union of these index pages, 

Poirot may provide some users with ideas that would not have occurred to 

them if they instead had worked in isolation. 

Previous research has estimated the relevance of an item to a given user 

directly from the ratings assigned to the item by other users (Shardanand and 

Maes, 1995; Alspector et al., 1997; Billsus and Pazzani, 1998; Herlocker et al., 

1999). This approach is called collaborative filtering. It requires information 

about how well matched the interests of the users are. If there is little over-

lap between the subsets of items that each user has rated, as is very likely in 

the case of web pages since there is effectively an unlimited number of them, 

then this may degenerate into pure guessing. IS In contrast, Poirot's approach 

ensures that all ratings are computed from each individual user's classifier, 

thereby eliminating the possibility of not having any information from 

which to calculate a rating. This is very similar to the approach used in the 

Do-I-Care system (Starr et al., 1996), except that they only disseminated the 

index pages through direct personal communication, not via existing web 

search engines. Poirot's method is therefore more efficient because it requires 

negligible effort to reach everybody on the Internet. 

15 Most collaborative filtering systems are designed to work in a very restricted domain, 
e.g., music, movies, or single topic Usenet newsgroups. In such restricted domains, it is much 
easier to find several users who have rated the same items. 
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<html> 

<head> 
<title> Index Page for "Goodman" </title> 
<meta name=lIdescription ll content=IIPoirot Index Page ll > 
<meta name=lIkeywords ll content=lI e l ectrical engineering, infor­
mation processing, microsystems, rodney, rodney goodman, sig­
nal, signal processing, vlsi ll > 
</head> 

<body> 

<h3> Index Page for "Goodman" </h3> 

<a href=http://www.micro.caltech.edu/micro/goodman/>Professor 
Rodney M. Goodman</a> 

<p> 
<a 
href=http://www.cns.caltech.edu/Faculty/Goodman.html>Professor 
Rodney M. F. Goodman</a> 

</body> 
</html> 

Figure 4.9: Hypertext Mark-up Language (HTML) source code for the topic 
index page generated by Poirot from the topic "Goodman" shown in Figure 
4.5. The "meta" information near the top specifies the keywords that are rele­
vant to the topic so that web search engines can exploit them. 

Index Page for "Goodman" 

Professor Rodney M. Goodman 

Professor Rodney M. F. Goodman 

Figure 4.10: The result of displaying the source code from Figure 4.9 in a web 
browser. The meta information is not displayed but is taken into account by 
search engines. Underlining indicates that the text is the anchor for a link to 
another page. The Universal Resource Locator (URL) for the page comes 
from the hypertext reference (href) specification in the source code of Figure 
4.9. The URL is not displayed, but when the user clicks on the text with the 
mouse cursor, the web browser will display the page. 
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4.5. Miscellaneous features provided by Poirot 

4.5.1. User interface design 

Poirot's user interface is designed with the idea in mind that all relevant 

information should be available to the user. However, in order to prevent 

the user from feeling overwhelmed, it should also be easy to ignore as much 

as possible. The various ratings and other information provided by Poirot 

are therefore discreetly placed in peripheral columns in the windows, as il­

lustrated in Figure 4.8. Furthermore, the user can choose to have Poirot sort 

the web pages by either the main rating, which is displayed in the Score 

column (dr. Figure 4.5), or the change rating, which is displayed in the Status 

column (dr. Figure 4.8). In this way, one does not have to manually inspect 

the values. Moreover, the values that indicate "relevant" are displayed in 

bold so it is easier to find the cutoff between relevant and irrelevant pages. 16 

In addition, information about the performance of the learning algorithm, 

such as the words that are used and the expected probability of correctly rating 

new web pages, is available on demand in separate windows, as shown in 

Figure 4.6. 

4.5.2. Avoiding loss of information 

Web pages are sometimes deleted or moved to different locations. 

When this happens, Poirot displays an X in the Status column to indicate 

that the page is unavailable. The information is not lost, however, because 

16 Since the data used in Chapter 3 only provides a Boolean measure of relevancy, it is not 
certain that a lower rating is less relevant than a higher rating, e.g., that a rating of eight 
will be less relevant than a rating of ten. However, since the web pages are displayed in a lis t 
and must therefore be presented in some particular order, sorting in descending order of rating 
seems least likely to confuse the user. 
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the content of every relevant page that Poirot has located is stored in a cache. 

Poirot provides the option to view the cached version. 

Poirot also provides the option to search through the cache for relevant 

information17
, e.g., particular names, statistics, or quotations. This approach 

requires both less time and effort than using a web search engine. The reason 

is that only relevant web pages are searched, not everything that would be re­

turned by a web search engine. This is especially helpful when the set of 

pages grows very large because, in this case, one would otherwise be faced 

with the same problem as at the start, namely searching a large number of 

web pages for specific information. If the desired information is not found 

among the cached pages, Poirot automatically offers to create a new topic and 

start searching the Web. 

4.5.3. Benefiting from newly available search engines 

New search engines are constantly becoming available. As indicated in 

the block diagram in Figure 4.1, the modular design of Poirot makes it easy to 

provide support for additional search engines. The interface to a search en­

gine is simply the Universal Resource Locator (URL) for initiating the search, 

the URL for continuing the search, and a regular expression (regex) for ex­

tracting the web page links from the results returned by the search engine. 

17poirot thus subsumes the service provided by Backflip, http://www.backflip.com/. a 
web site that lets each user store a personalized set of links to web pages and includes the abil­
ity to search the contents of these pages. 
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4.6. Results of initial user testing 

Several users have tested Poirot on topics of personal interest. All of 

them have reported that Poirot successfully located many relevant pages, just 

as it did in the example session documented in Section 4.1. One user stated 

that the quality of Poirot's results was significantly better than that of his fa­

vorite web search engine. Another user reported that the focus of his interest 

tended to drift as he studied the web pages discovered by Poi rot, and that the 

program successfully tracked this drift as it interacted with him. Moreover, 

all users agreed that Poirot often found unexpectedly relevant pages. This 

helped them both improve their understanding of the topic and broaden 

their search for more relevant web pages. 

4.7. Comparison with other systems 

Poirot differs from systems such as Letizia (Lieberman, 1995), LIRA 

(Balabanovic et al., 1995), and Web Watcher (Armstrong et al., 1995) which 

were designed to supply immediate answers to individual questions while 

the user is browsing the Web rather than providing continuing support for 

topics of long term intereses The "Syskill & W ebert" system (Pazzani and 

Billsus, 1997), on the other hand, resembles Poirot more closely. It was also 

designed to support the user's long term interests. However, as with the pre­

viously mentioned systems, "Syskill & W ebert" only provides suggestions 

while the user browses, and does not independently search the Web for addi­

tional, relevant pages while the user is occupied with other tasks. 

18 The system called Watson (Budzik and Hammond, 1999) takes this goal to the extreme by 
providing immediate answers via what the authors refer to as "just-in-time information re­
trieval system." It analyzes the text that the useris editing in a word processor and automati­
cally searches for relevant web pages. 
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Furthermore, "Syskill & W ebert" uses the NB-96 algorithm which has been 

shown to perform quite poorly (see Section 3.5). 

The project with design goals closest to that of Poirot seems to be 

EUROgatherer (Amato et al., 2000). Unfortunately, at this point in time19
, 

there does not appear to be any published information on its algorithms or its 

performance, and the software is not available, so a quantitative comparison 

with Poirot cannot be made. 

Another system that deserves mention is WebACE (Boley et al., 1999). 

Although the authors do not directly discuss the issue, it appears that it 

might be possible to use this system to track topics of long term interest since 

it is designed to first group web pages into related clusters and then search for 

more web pages to add to each cluster. However, WebACE uses an unsuper­

vised learning algorithm. Thus, even though it does group web pages into a 

small number of clusters, it can be difficult to determine what topic each clus­

ter represents, in contrast to Poirot where each topic is defined explicitly by 

the user. 

Poirot also differs from most other systems by being able to decide 

whether or not changes made to previously located web pages are important. 

There are services such as URL-mindeeo that will send the user email when a 

specific page changes. However, none of these systems are able to determine 

why the user considers the web page to be relevant in the first place. Thus, 

they are unable to evaluate whether or not a detected change is likely to be of 

interest. The user will therefore have to manually reread web pages with 

only insignificant changes such as spelling or grammatical corrections. 

19 Since the EUROgatherer projectis no longer being funded (Amato, 2000), it seems unlikely 
that any more information will be made available in the future. 

20 http://www.urlminder.com/ 
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The Do-I-Care system (Starr et al., 1996) appears to be the only other sys-

tern that attempts to filter out such trivial and irrelevant changes.21 However, 

unlike Poirot, Do-I-Care trains separate classifiers for new and changed web 

pages, thereby requiring considerably more feedback from the user. 

Furthermore, Do-I-Care provides only a single rating, while Poirot displays 

the number of new links separately from the rating for the changes to the 

text. In addition, the rating displayed by Do-I-Care is computed from only the 

additions to the web page since the program's last visit. This ignores the 

other two issues discussed in Section 4.3 that are accounted for in Poirot's for-

mula for Rchange and also the possibility that a page may infrequently change 

in small increments. Do-I-Care will therefore report only large, sudden 

changes to a web page and will miss the accumulation of smaller, gradual 

changes. 

4.8. Suggestions for future work 

4.8.1. Natural Language Processing (NLP) 

One possible direction for future research is to attempt to improve 

Poirot's learning algorithm by using Natural Language Processing (NLP). 

Other researchers have addressed the problem of using NLPto determine the 

topic of a document, but these efforts have so far concentrated on restricted 

vocabularies or fixed sets of documents (Lewis et al., 1989; Jacobs and Rau, 

1990). This might be sufficient, however, assuming that each topic is ana­

lyzed separately. The issue was not considered in this thesis because the NB-

21 Amato et al. (2000) claims that EUROgatherer also does this, but they do not provide 
any details. 
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CV algorithm performs so well that there is not much room left for improve­

ment. The uncertain prospect of only a small increase in accuracy does not 

seem to warrant the considerable effort required to implement an NLP sys­

tem. 

4.8.2. Using a thesaurus to expand the list of keywords 

A more modest approach than implementing NLP would be to add an 

on-line thesaurus that could provide additional keywords for both the initial 

search and the nightly updates. Web pages that use synonyms of the user's 

initial keywords would then also be retrieved. However, since a thesaurus 

stores synonyms for all meanings of each word, one must be careful to pick 

the appropriate ones (Krovetz and Croft, 1992). Gauch and Smith (1991) have 

demonstrated that retrieval is most effective when using a combination of 

user supplied keywords, user selected terms from a thesaurus, and statistical­

ly relevant words from previously retrieved documents. Thus, Poirot should 

only use a thesaurus to suggest additional keywords, not to augment the key­

word list automatically. Several on-line thesauri are available from 

http://www-a2k.is.tokushima-u.ac.jp/member/kita/NLP/lex.html. 

4.8.3. Exploiting the links between web pages 

Spertus (1997) has suggested that one might be able to determine the rel­

evance of web pages from the connectivity graph of links between the pages. 

The issue was not considered in this thesis because it was beyond the scope of 

comparing classification algorithms that use the contents of each individual 

web page. It would be possible for Poirot to search for additional web pages by 



163 

using a special feature of the Alta Vista web search engine22 to retrieve web 

pages that link to known, relevant pages. However, it is not clear that this 

would yield any pages that would not be returned by direct searches. It is pos­

sible that it might provide a way to find index pages, but it seems very likely 

that these index pages would constitute a negligible fraction of all the pages 

that would be returned. If so, the results would not be worth the effort. 

4.8.4. Extracting information from Use net and mailing lists 

Usenet and mailing lists have been suggested as possible sources of in­

formation. If one subscribed to specific newsgroups or mailing lists, Poirot 

could automatically scan every message for links to web pages and then test 

each page for relevance to each of the user's topics. Unfortunately, many 

users automatically include miscellaneous links in the "signature" (.sig) at 

the end of every message they send. Without sophisticated filters to detect 

and ignore these signatures, Poirot will likely be overwhelmed with irrele­

vant web pages. Developing such filters was deemed to be beyond the scope 

of this thesis. 

It has also been suggested that Poirot could directly filter messages sent to 

Usenet newsgroups and mailing lists. This is likely to be far more difficult 

than filtering web pages, however, because topics of discussion may vary 

widely within a single news group or mailing list and each topic is typically 

discussed for only a short time, after which interested users are politely re­

ferred to an archive somewhere on the Web. It therefore seems better to sim­

ply let Poirot extract relevant messages from these archives via the search en­

gines that index them. 

22 http://www.altavista.com/ 
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Chapter 5 

Summary 
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Substantial improvements have been made to ITRule. Extensive tests 

conducted with the Reuters-21578 data set show that the new CV-J algorithm 

constructs a significantly more accurate classifier than the original MDL algo­

rithm. In addition, ITRule has been extended in several ways to provide bet­

ter support for data exploration beyond that of merely printing a list of rules 

sorted by their J-measures. A robust algorithm for quantizing continuous 

variables has also been developed so that this task no longer has to be done 

manually by an experienced user. 

In addition, the design, experimental justification, and experimental 

demonstration of a completely new, user friendly information gathering sys­

tem called Poirot has been presented. This autonomous software agent can 

assist World Wide Web users in staying up to date on new developments of 

importance by first learning what is of interest to the user and then indepen­

dently searching for relevant new web pages and significant changes to previ­

ously discovered ones. The performance of Poirot's learning algorithm on 

the Reuters-21578 and WebKB data sets demonstrates that this autonomous 

system can provide substantial improvements over manually surfing the 

Web or performing a keyword search via a Web search engine. 
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