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PROCESSING TECHNIQUES IN PUBLIC KEY CRYPTOSYSTEMS

Rod Goodman

Department of Electronic Engineering
University of Hull, Hull HU6 7RX , U.K.

Abstract

The increasing use of cryptographic techniques in business and
commercial deta communications systems will only come about if
cheap and fast hardware LSI devices can be designed to implement
the algorithms. This has already happened with the DES but in the
case of public key cryptosystems the process is only at the
development stage. This is due to this nature of the algorithms
and to the fact that the algorithms are themselves under
suspicion. The paper examines public key cryptosystems and their
modifications from an implementation point of view.

1. Introduction

In modern cryptography, the security of a transmission rests }n
the secrecy of a "key" rather than in keeping the algorithm used
by the cipher machine a secret. In a conventional (or symmetric)
cryptosystem (CC) such as the DES (ref.l), the algorithm is in
fact an international standard. In such a system the cipher
machine is "primed" with a secret key which tells the machine
which transformation to apply to the plaintext, out of the many
possible transformations within the algorithm, to turn it into the
ciphertext. The receiving cipher machine uses the same (or a
directly related) key to effect the inverse transformation from
ciphertext to plaintext. An enemy with an identical machine can
only try to find or steal the key, given that the cryptosystem has
been well designed in that it is computationally and statistically
infeasible to deduce the key even with known plaintext ciphertext
pairs. A fundamental limitation of this system is therefore that
the users must have previously securely set up a common key.
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This "key distribution problem" is severe in a networking or
electronic mail environment. If a packet or local area network
has n users, any pair of whom may wish to communicate, the number
of potential keys rises as n squared. There is a further
limitation of the CC when authentication is considered. An
enciphered order may contain a weak authenticator such as an order
number and date, but because the receiver has the ability to
create a ciphertext from any messagetext desired, disputes between
the two parties cannot be resolved by a judge.

In 1976 Diffie and Hellman (ref.2) and independently Merkle
(ref.3) proposed a new cryptographic scheme called a
Public-Key-Cryptosystem (PKC) that is essentially asymmetric
(ref.4). The elegance of the method stems from the use of
different keys for encryption and decryption (EK and DK), and that
it is infeasible to derive one from the other. Thus if network
users generate key pairs and make their encryption keys public in
a secure (say printed) directory the need to distribute keys does
not arise. In order to send a message M to a user, we generate
the ciphertext C = E(M) by encryption with his (public) encryption
key. The user keeps his decryption key secret so that only he can
invert the procedure to give M = D(C) = D( E(M) ). An enemy is
faced with deriving DK from EK, which we have said is "hard".

Note that in this scenario prior authentication is assumed, i.e.
the very fact that our encryption key is public enables any user
to send us messages. We must be sure that the person sending the
message is who she says she is.

PKC schemes also permit us to devise authentication procedures
such as signing a contract which we cannot later deny, showing
that a message has not been tampered with, and establishing
identity beyond doubt. 1In order to achieve this we require the
additional property that for all (or nearly all) cryptograms

E( D(C) ) = C . That is, "decryption" of a message makes sense
because most messages are also cryptograms. We can sign a
document as follows. User A sends an message M to user B,
encrypted with B's public key for security. A then forms a
pre-signature which is some function of the plaintext M and is
also a valid cryptogram in A's encryption algorithm (ref.5). A
decrypts this using his secret key to form the signature § = D(C)
which only he can do. This is then sent to B (via encryption for
secrecy if neccessary). B uses A's public key to form

C = E( D(C) ). B operates on the already received message M to
form the pre-signature which she then compares to C. If they
match then B is sure that M came from A. Furthermore, as no one
other than A (including B) could have produced S, A cannot later
deny that he signed M. Also B cannot alter M or S without
destroying the correspondence C = E(S). There are situations in
which keeping the message secret is not desirable in the
authentication process. Consider that 'WE' have an ambassador in
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an alien country who has to use 'THEIR' PTT to send 'US' messages.
'THEY' will not allow him to send coded messages which 'THEY'
cannot read for fear of espionage. 'WE' must be sure that 'THEY'
are not tampering with the ambassador's messages. With asymmetric
encryption both parties can be satisfied. 'WE' give 'THEM' the
decryption key but keep the encryption key secret. The ambassador
gives 'THEM' a message M and the resultant cryptogram C. 'THEY'
decrypt C and check that D(C) = M. 'WE' receive M and C and check
that the message is authentic if E(M) = C.

We can concieve of a PKC system working in conjunction with a CC,
particularly in an electronic mail environment. The PKC is used
to securely distribute session keys and to authenticate users. A
disadvantage of the PKC is that it is essentially one-to-one.

That is, we set up a two user secure channel. If we wish to send
a broadcast to several users we need to encrypt the same message
several times. This redundancy is particularly severe in a packet
switched network where group addressing is usually built in.
Several authors have attacked this problem (ref.36,40,41,42).

The secrecy of the PKC resides in the one-wayness of the
operations involved. The investigation of suitable one way
functions has been the subject of intense research since Diffie
and Hellman's paper.

2. Trapdoor One-Way Functions

A function y = F(x) is said to be one-way if 1) there is a
one-to-one relation between x and y, 2) given x it is 'easy' to
compute y, and 3) given y it is 'hard' to compute x. Furthermore
in a trapdoor one-way-function it is easy to compute x from y
given some secret side information. Diffie and Hellman (ref.2 and
6) describe a key distribution system based on the one-wayness of
the discrete exponential and logarithm functions. If p is a prime
and a is a primitive element, then for x and y in the range O to
p-1

x
y=a modp and x = log y over GF(p)
a

It is easy to compute y given x (ref.7) in about 2log p (base 2)
multiplications (ref.8). For example (ref.9) noting that
35 = 10011 in binary, we have

35 32 2 1 ‘2 2222 2 2
a = a . a . a=(({({a )))) .a .a

which requires seven multiplications. Even if the x's are several
hundred bits long it is still easy to evaluate the exponential as
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given in (refs.5 and 10). Evaluation of the logarithm is
conjectured to be much more difficult requiring of the order of
root p steps (ref.8). Tighter bounds are known (refs.11,12,13)
but for numbers of the order of 500 bits, it is still
computationally infeasible to find the log.

The distribution method works as follows. Given

u i ui iu
U=a modp, I=a modp, K=a =a modp

'You' think up a random number u and tell me U. 'I' think up a
random number i and tell 'you' I. 'You' raise I to the power u,
'I' raise U to the power i and we have both calculated the key K.
'They' only know U and I and our one-way function. To find K
'they' need to find either u or i and 'they' are up against a
one-way function.

The generation of secure PKC depends on the finding suitable
one-way functions with hidden trapdoor information to make the
inversion feasible. Such schemes have been proposed by
Merkle~Hellman (ref.5), Rivest et al. (ref.14), McEliece
(ref.10), Lu-Lee (ref.15), Kravitz and Reed (ref.16),MITRE
(ref.17), Gordon (ref.18), etc. These schemes have been subjected
to intense scrutiny and some have fallen as a result. Indeed it
may prove impossible to devise workable PKC's given the rate at
which new 'holes' in the techniques are found, and the rate at
which new modifications are proposed to overcome some of the
disadvantages. Notwithstanding this, let us now consider the two
most popular systems.

3. The Merkle~Hellman Trapdoor-Knapsack PKC

The knapsack problem is a combinatorial problem in which one is
given a vector a of n integers (the weight of each possible object
in the knapsack) and an integer S which is the sum of a subset of
the a's (the actual weight of the knapsack). The problem is to
solve for the subset, that is the binary vector x corresponding to
S = a * x (ie find which objects are in the knapsack). The
general knapsack problem is one in which the coefficients of x are
integers instead of O or 1, and this problem is known to be
NP-complete and therefore 'hard'. However, some knapsacks are
easy to solve. For example if a = (1,2,4,8,16...) ie the powers
of 2, then x is the binary representation of S. Merkle and
Hellman (ref.5) use a knapsack vector a' which is superincreasing.
That is, each integer is strictly greater than the sum of all
previous integers. For example a' = (171,196,457,1191,2410).
Given S' = 3797 we can easily compute S' = 2410+1191+196

ie x = 11010. This 'easy' knapsack is then disguised by k
iterations of modular multiplication to produce a trapdoor
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knapsack vector a that is 'hard'.Thus

a =({((a'"*w )Jmodm ) * .... ) *w mod m
1 1 k k

where w is invertable modulo m , that is gcd( w ,m ) = 1.
J J B

if the vector a is made public then anyone wishing to transmit a
message x would calculate the hard knapsack S = x * a , which the
recipient would transform into the 'easy' knapsack S' = x * a'-
using the secret m and w, Thus:

-1 -1
S'=(((S*w )modm )* ,.... )*w modm
k k 1 1

-1
Using the example from ref.5, chose m=8443 and w=2550, then w
=3950 by Euclid's algorithm (ref.8). The published knapsack is
now a = (5457, 1663,216,6013,7439). Given S = 1663+6013+7439
=15115, we compute S' = 3950.15115 mod 8443 = 3797 as before. The
scheme is attractive because encryption is fast, requiring only
addition, and also fast decryption schemes have been proposed
(ref.28). The original Merkle Hellman scheme proposed n=100
knapsack vectors and a 202 bit modulus thus making the a 202 bit
pseudorandom numbers of length 202 bits. The sum S requires a 209
bit representation giving an intrinsic 2.09 data expansion from x
to S with k=1 iterations, and a public key size of 20kbits.
Attacks on the system have however forced these parameters to be
revised upwards. In particular Shamir (ref.18) shows that two or
more iterations are definitely needed, and this causes the data
expansion to increase by seven bits at each iteration. At present
the whole security of the superincreasing trapdoor is in question
(refs.20,21, 22,23,24). In particular Desmet et al. (ref.22{
find that iterative transformations do not guarantee higher
security, and that infinitely many superincreasing decryption keys
exist as soon as one exists. Shamir (ref.21) has discovered a
technique which will solve a given knapsack with a probability of
success that is directly proportional to the density of the subset
sums S, where a dense knapsack is one in which nearly all integers
in the interval between 1 and the sum of all the knapsack integers
are valid subset sums. This makes dense knapsacks unsafe for
cryptographic use. McAuley and Goodman (ref.25) have proposed a
new trapdoor in a knapsack PKC that is not based on a
superincreasing sequence in order to defeat these attacks.
However, new results (ref.26) seem to indicate that most
cryptographic knapsacks can be solved in polynomial time, even if
they are not based on superincreasing sequences. These results
further question whether all useful knapsacks can be cracked, and
wheather useful ones can be generated and tested.
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The inherent expansion in the trapdoor knapsack means that these
systems are not well suited to providing public key
authentication, because only a small fraction of all possible
message words of a typical length lead to a binary solution of the
knapsack. Schobi and Massey (ref.27) have proposed a nonbinary
solution that overcomes this.

4, The Rivest-Shamir-Adelman (RSA) scheme

The RSA scheme (ref.14) is based on the fact that it is much
easier to generate large primes and multiply them together than it
is to factor the result. The key generator chooses two large
primes p and g which are a few hundred bits long. 1if n=pq then
Euler's function is (p-1)(q-l1) that is, the number of integers
between 1 and n which have no common factor with n. We then
choose a number e relatively prime to (p-1)(g-1) and use Euclids
algorithm to find the 'inverse' d via the expression e.d =1 mod
(p-1){q-1). The public key is (n,e) and our secret trapdoor
information is d and the factorisation of n. The message text is
represented as an integer from O to n-1 and the enciphering and
deciphering procedures are the modular exponentiations :

e d
C=M modn M=C modn

We have seen previously that even if the e and d are large the
number of multiplications required in the exponentiation is
managable, whilst the enemy has a task as difficult as factoring
n. For example (ref.6): choose p = 5 and q = 11. Then n = 55
and (p-1)(gq-1) = 40. If e = 7 thend = 23 as 7.23 = 1 mod 40,
Choosing a message M = 2 :

7 1 2 4
2 mod 55 = 2 .2 .2 mod 55 = 18

O
n

23 1 2 4 16
M = 18 mod 55 18 .18 .18 .18 mod 55

18.49.36.26 mod 55

=2

The RSA method has also been subjected to attacks but has
withstood these much better than than the trapdoor knapsack
scheme. (refs 20, 29-34). Furthermore the RSA scheme gives
digital signatures directly as there is no expansion of the
message text. In addition, an elegant probabalistic test (ref.14)
gives us a means of generating large primes efficiently, thus
makeing the RSA algorithm self-contained and secure.

5. Implementation

Cryptographic algorithms are ideally suited to VLSI implementation
because of their computation-intensive nature. In addition, there
have been new developments in tamper-proof chips for software
protection (ref.35) and these permit the possibility of secure
generation of keys, without user intervention. The main
implementation of cryptographic systems so far has been the
production of DES chips. These are available from several
manufacturers in both single chip and chip-set form. For example
the Advanced Micro Devices AMZ8068 which gives throughput rates of
over 1 Mbyte per second.

The integration of PKC systems is still at the development stage.
There are several reasons for this. Firstly the PKC algorithms
require more computation than the DES and thus imply lower data
throughput rates, but more importantly he algorithms are still
under development and their security is still in question. Given
this fact it is not surprising that all implementations have been
directed towards the RSA scheme or hybrid DES-RSA schemes where
the RSA is used for key distribution and the DES for fast
encryption.

Rivest (ref.37) has reported a single-chip implementation of the
RSA algorithm. The design is essentially a big-number ALU, that
can operate on 512 bit numbers and hence perform all calculations
needed by the RSA. The chip implements the operations of
addition, subtraction, multiplication, division, remainder, and
modular exponentiation. In addition other useful functions such
as generation of large primes are performed. The 512 bit ALU is
organised in a bit-slice manner with 8 general purpose registers,
up-down shifter logic, and multiplier (carry-save) logic. The ALU
is only capable of performing the operations A.B+C, shift-left,
shift-right, test least significant bit. All the higher functions
are implemented by the microprogram stored in the internal PLA.
With a feature size of 2 microns the chip is large measuring 5.5
mm by 8 mm, and the 4MHz gives an encryption rate of 1200 bits per
second. The complexity of this chip however raises doubts as to
the yields obtainable.

The essential operation in the RSA algorithm is that of modular
exponentiation. This reduces to modular multiplication at its
simplest level. Simmons and Tavares (ref.38) are working on a
modular multiplier in NMOS technology using a 6 micron feature
size. The design is again bit slice orientated and the two steps
of multiplication and then modulo reduction are performed by the
same device. That the two operations are essentially the same can
be seen as follows. The process of multiplication can be seen as
that of conditionally adding together shifted versions of the
multiplicand. Thus for each 1 in the multiplier an intermediate
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product is formed by adding in a version of the multiplicand that
has been shifted the same number of places as the 1 in the
multiplier. Modulo reduction can be considered as conditional -
subtraction of the modulus from the product. The modulus is first
shifted left until its MSB is aligned with the MSB of the product.
If the shifted modulus is less than the present result, we
subtract it to form a new result, and then shift the modulus one
bit right. If the shifted modulus is greater we do not subtract
but just shift. This repeats until the result is less than the
shifted modulus. The implicit comparison operation is complex but
can fortunately be eliminated as follows. First, a sign bit is
required in the result which is initially presumed positive i.e.
s=1. Then starting at the MSB end as before the subtractions are
replaced by the addition of one of two values: the modulus or its
two's complement. Both values are shifted and the sign of the
present result determines which value is to be added. If s=1 ie
the result is negative we add the modulus, if s=0 add the two's
complement. When the LSB's line up one further addition of the
modulus is needed if the result is negative, to ensure a positive
final result. Thus a single unit consisting of an adder with
inputs that may be shifted can perform both multiplication and
modulo reduction. This requires that the input to the adder can
be selected from one of four values: zero, the multiplier, the
modulus, or the two's complement of the modulus. In ref.38 the
authors hope that chips will be ready during 1983. They estimate
a total multiply modulo time of 250 microseconds for 128 bit
inputs. The design appears attractive, particularly with the
incorporation of parallel pipelining of the inputs and outputs.
That is, as one set of data is being processed by the arithmetic
unit, the result of the previous set is being output and the next
data set is being input. The major limitation of the device is
its 128 bit maximum wordlength, and its slow throughput of about
4Kbits.

McAuley and Parker (ref.39) have been working on an Advanced
Cipher Processor (ACP). The device has a mask allocation number
MA743 and is being fabricated by the GEC research laboratories at
the Hirst Research Centre, Wembley, England. The device
essentially performs modular exponentiation of 512 bit numbers,
and is to be fabricated in bulk CMOS technology using 2.5 micron
feature size. A data throughput rate of 50 Kbits per second is
hoped for.

The VLSI architecture group at Hirst have an active systolic array
program and the design of the cipher processor reflects this. The
systolic 'data pumping' approach is particularly suitable for high
performance computing VLSI structures. In general a systolic
array is a one or two dimensional array of identical functional
modules, typically simple digital circuits, arranged in a regular
fashion. Each module is connected only to its nearest neighbours
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forethe purposes of data transfer. Each module utilises common
control and timing so that all the modules perform the same
function simultaneously but on different data items. The data
streams move at constant velocity over fixed paths and interact
whenever they meet. Multiple use is made of each data item which
results in high computational throughput without the need for high
bandwidth memory links. The precise function of the cell depends
on the problem to be solved.The advantages of the systolic
approach include short interconnects thus giving high speed
transfer with low power drivers and small chip area, easy-to-scale
architecture,small system control overhead, and minimal data
transfers to and from memory (data is input once, used, and
discarded). Note that this also allows parallel pipelining. The
design of the chip builds on previous work at Hirst on an
inner-product step cell. This is a circuit for computing the
function C' = A.B + C and propagating delayed versions of A and B
to neighbouring cells. This work indicated that although
bit-parallel arithmetic is faster than bit-serial, the latter
approach gives a greater functional throughput per unit chip area.
For these reasons, and because of the high density caused by the
512 bit integers aimed at on this single chip, serial arithmetic
is used.

The ACP communicates with the host microcomputer via an eight bit
bidirectional data bus, and a number of control pins. DMA
transfers are supported. Internally the device consists of the
control unit, the modular exponential unit, four 512 bit registers
which hold the exponent, modulus, inverse and output.
Communication with the host is via a 64 byte I/0 stack, a control
register and a status register. The internal and external
operations are essentially asynchronous with communication through
the status register, so that for example input data can be loaded
to the stack whilst the modular exponential unit is operating.
The heart of the unit is the modular exponentiator which consists
of a 512 bit serial parallel multiplier which performs the
exponentiation and a similar 512 bit divider which performs the
modular reduction. The multiplier feeds the divider and
vice-versa so that data is only input once and thus input-output
pipelining is possible. The data flow is thus circular. To
operate the unit the keys are first loaded into the appropriate
registers via the I/0 stack, that is the modulus, exponent and
after a precomputation, the inverse register. The input data is
then supplied to the exponentiator which will circulate until the
output is ready and in the output register. During this period
the I/0 stack can be loaded with new data if required. If the
result is ready and the stack is still busy, with new data, then
the output waits until the new data is claimed by the
exponentiator before transferring itself to the I/0 stack. This
parallel pipelining contributes greatly to the overall speed of
the device.
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