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In this paper we propose a general information-theoretic model for rule-based systems and

describe an algorithm which can induce an optimal set of concepts or rules from a set

of examples. This paper is an extension of a companion paper [1] which analysed the

information theory model in the more restricted problem domain of deriving classification

decision trees from a set of examples. We show in this paper that previous work in this area

has concentrated on learning single concepts from examples and is classification-oriented.

Motivated by the need for an induction method which can derive a more flexible set of rules
for expert systems we define a non-parametric information-theoretic methodology. This

information-theoretic representation is shown to be compact, mathematically consistent

and very powerful. The main advantage of our approach over previous algorithms is in the

flexibility of representation, allowing the algorithm to learn many different concepts.

The generalised rule induction problem

The ability to extract general information from a set of examples is a fundamental charac-

teristic of knowledge acquisition. The term example is taken to mean a feature vector of

attribute values where the values are assumed to be either categorical or discrete numerical.
Usually in this notation each feature vector has another component called a classification

which contains the class label for that example. However for our purposes we treat the clas-

sification as just another attribute, albeit an important one. The set of specific examples
can be thought of as a large table of these feature vectors, where 'large' means statistically
sufficient for whatever computations may be required. The general information we wish

to extract from these examples is taken to be in the form of production rules, i.e.

if condition A then condition B with probability p

where we allow the antecedent A to be the conjuction of several simple conditions and the

consequent B is restricted to being a single simple condition. A simple condition is defined

as 'attribute X takes on value y'. The rationale for choosing this representation is based

on both theoretical and practical considerations. Theoretically it has been postulated that

such rule representations are a good model for knowledge representation [2] while from a

practical viewpoint such rules can be used as the knowledge-base for an expert system.
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In this paper we consider the problem of obtaining the best set of rules given a set of specific

examples. What is new is the fact that we do not restrict the consequent clause in our rules

to be the classification attribute, i.e. we are interested in attribute-attribute rules as well

as attribute-class rules. Previous work in rule-induction has concentrated on classification-
type rules where the consequent clause only involves the class variable. However in data-
driven applications a more flexible and general approach is desirable. One wishes to have
rules relating attributes. In this sense, by treating the class as 'just another attribute',
the generalised rule-induction problem is formulated. The more standard classification

approach is seen to be a special case of the general problem.

Consider an example from the animal domain (mammals actually). Say we have a large list

of animals (our example set), each animal being described in terms of various attributes

such as size (large or small), colour, number of legs, dangerous (yes or no), species, etc. A

classification-type of induction algorithm might induce rules such as

If the animal has no legs then it is a snake with probability p

A more general induction algorithm would induce rules such as

If the animal is large then it has 4' legs with probability p

in addition to the classification rules. The advantages of the more general approach are
obvious in terms of providing a more accurate representation of the important concepts
about the domain from which the examples are taken.

For the purposes of this paper we limit our attention to selective induction (where the

induction algorithm retains the same representation as given by the examples) as opposed

to constructive induction.

Earlier work in the area of rule induction

A good taxonomy of automatic induction algorithms is given in Cohen and Feigenbaum

[3]. These algorithms can loosely be categorised into two main areas; those which use

symbolic manipulation techniques and those which use statistically-oriented techniques.

A good example of the former would be the AQll algorithm of Michalski and Larson

[4] which achieved success in the domain of plant disease diagnosis [5]. Typically these

algorithms examine the examples sequentially and refine what is known as the rule space

until a set of general rules covering the examples are arrived at. However noisy examples

(as in the case where not ~ but nearly all large animals in the domain have 4 legs) are not

easily handled by the symbolic approach. In addition the algorithms are computationally

unattractive. Consequently their use has been limited to research-oriented endeavours

rather than practical applications such as knowledge acquisition for expert systems.

Methods which can termed as statistical, exploit average properties of the example set.

Perhaps the best known of such techniques is Quinlan's ID3 algorithm [6] based on infor-

mation theory. The ID3 algorithm derives an efficient classification tree for the example



set. This algorithm has been used in several practical applications [7,8]. Recent work

has shown that the basic strategy of the algorithm is theoretically well-founded [9]. An

interesting experiment which we carried out was to use the information measure to de-

rive hierarchical edge detectors [1]. Because we formulated the problem in a classification

framework, the algorithm in essence was able to learn basic edge detection capabilities.

In addition the experiment yielded new domain-specific information as to which attribute

was the single most important edge discriminator.

The information-theoretic approach

In this paper we intend to view the generalised induction problem from a statistical view-

point, using information theory techniques in particular. To begin with we are given a

sample set of data, in the domain or universe of interest (e.g. mammals), i.e. a list of

examples from this domain described in terms of attributes. We assume that the size of

the sample set is sufficiently large to allow us to estimate statistical parameters to some

required degree of accuracy - we need not be overly concerned with the sampling theory

aspects of the problem.

The attributes ('class' included) can be viewed as random variables and, as assumed earlier,

are discrete-valued. The generalised rule induction problem can then be reformulated from
this random variable viewpoint - in some sense we want to 'capture' all the important inter-
dependencies among the set of random variables. So the best set of rules should (somehow)

be the most important dependency relations between the random variables - but how can

we quantify this? If p is near, or equal to, 1, does that mean that the rule is good? Not

if one considers the example

If the animal is a kangaroo then it does not dr%"nk beer with probability = 1

Although p = 1 this cannot be viewed as a good rule, at least in most parts of the world.
It is reliable but it is simply not useful. On the other hand a rule such as

If the am"mal %'s red then it is a bird with probability = 0.6

is quite unreliable but in fact it could be quite useful. Hence whatever measure we choose

to represent the 'goodness' of a rule must at least be a function of the usefulness and the
reliability of the rule, although we have not specified how to measure either parameter.

Consider the average mutual information measure between 2 random variables A and B,
I(A;B), as defined by Shannon [10]. This measure has certain interesting properties. The

definition can be given as

I(A; B) = H(A) - H(AIB)

i.e. the average information that A provides about B is our original average uncertainty

about A (H(A)) less our remaining average uncertainty about A given B (H(AIB)). An-

other way to put it is that it is our average decrease in uncertainty about A once we know
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B. H(A) is the entropy function, a measure of how uncertain we are about the value of A.*

The information measure was originally defined by Shannon in 1948 and has found almost

exclusive (but extremely profitable) use in the area of communication theory. Nonethe-

less this measure has more general implications than just measuring the information sent

across a channel.

We propose that the information measure is a natural and intuitive measure for the 'good-

ness' of a rule. Further we argue that it is powerful in terms of induction properties while

being consistent and mathematically rigorous from a statistical viewpoint. As we stated

previously, rules can be viewed as defining the relative dependency of two random vari-

ables. The information measure I(Aj B) is a measure of this dependency. Independent

variables have zero mutual information (I(Aj B) = 0), while completely dependent vari-

ables have the maximum amount of information possible, i.e I(Aj B) = H(A) = H(B).

But as we saw in the kangaroo example, dependent variables do not necessarily yield good

rules. Consider the information contained in this rule. The information is the decrease

in our uncertainty about the variable 'beer-drinker' (yes/no), in the animal domain. But
Pyes = 0 and Pno = 1 so that our initial uncertainty is zero, i.e. we are certain that animals
do not drink beer. Hence knowing whether the animal is a kangaroo or not provides us

with zero information. The rule is useless according to our measure - just the result we
desired. If we look at the basic definition of I(Aj B) above we can identify in a general

sense that the H(A) term can be a measure of the usefulness of a rule (as it pertains to

A), while the equivocation or noise term (H(AIB)) is a measure of the umeliability of the

rule.

One of the fundamental criteria for any worthwhile induction mechanism is that it must

have the property of generalisation (see Michalski [13]). Consider for example the rules

If the am"mal tOS brown and tOt can fly then tOt has wings

and

If the antOmal can fly then it has wt"ngs

Clearly the second rule is preferable to the first since it is more general. Can one measure

this preference quantitatively? The information measure has the property of additivity,

I.e.
I(Aj B, C) = I(Aj B) + I(Aj CIB)

where I(Aj B, C) is the average information provided about A by both Band C together,

and I(Aj CIB) is the average information provided about A by C, given that we know B

already. This latter quantity we can call the relative information of C to A given B. If this

is zero, then the more specific rule contains no information relative to the more general

rule. Hence the information provided by the variable 'is-brown' about 'has-wings' is zero,

given that we already know that 'can-fly' is trueo

* H(A) = E~l pi.log t where A can take on n values and Pi is the probability of the ith

component.
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antlers wings dangerous legs size dog reindeer snake bird probability

yes no no yes large no yes no no 0.1 0

yes no yes yes large no yes no no 0.01

yes no no yes small no yes no no 0.03

no no yes yes large yes no no no 0.16

no no yes yes small yes no no no 0.03

no no no yes large yes no no no 0.09

no no no yes small yes no no no 0.08

no no yes no large no no yes no 0.18

no no yes no small no no yes no 0.07

no no no no large no no yes no 0.01

no no no no small no no yes no 0.02

no yes no yes large no no no yes 0.01

no yes yes yes large no no no yes 0.06

no yes no yes small no no no yes 0.15

Figure 1

In summary, the information-theory model provides a consistent measure of the 'goodness'

of a rule and we demonstrated that it is clearly an appropriate model for the induction prob-

lem. Unlike many computational methods based on statistics the model is non-parametric,

requiring no restrictive statistical-model assumptions.

The rule induction algorithm

Having demonstrated the utility of the information theory approach in a general sense we

present initial results from a new algorithm called the ITRULE algorithm (Information-

Theoretic Rule induction algorithm). ITRULE induces the best set of rules from from an

example set where best is defined in an information-theoretic sense.

The earlier work of Quinlan [6], ourselves [1,9] and others [11] was based on algorithms

which when given a set of training examples ultimately produce a decision tree for classi-

fying the examples. The disadvantage of this approach lies in the restrictive format of the

tree structure. While it is true to say (as pointed out by Bundy et al. [12]) that the tree

represents a form of rule structure, this structure may be too limited for applications such



ITR ULE.l output: the most informative set of 20 rules

rule # 1 If the animal does not have legs then it is a snake with probability 1.00

rule # 2 If the animal is a snake then it does not have legs with probability 1.00

rule # 3 If the animal has wings then it is a bird with probability 1.00

rule # 4 If the animal is a bird then it has wings with probability 1.00

rule # 5 If the animal has antlers then it is a reindeer with probability 1.00
rule # 6 If the animal is a reindeer then it has antlers with probability 1.00

rule # 7 If the animal is dangerous and it is not a dog then it does not have legs with

probability 0.93

rule # 8 If the animal is dangerous and it is not a dog then it is a snake with probability
0.93
rule # 9 If the animal has legs then it is not a snake with probability 1.00
rule #10 If the animal is not a snake then it has legs with probability 1.00

rule #11 If the animal does not have wings then it is not a bird with probability 1.00

rule # 12 If the animal is not a bird then it does not have wings with probability 1.00
rule #13 If the animal does not have legs and it is large then it is dangerous with
probability 0.96

rule #14 If the animal is large and it is a snake then it is dangerous with probability

0.96

rule #15 If the animal has legs and it is not a dog then it is not dangerous with

probability 0.94

rule #16 If the animal is not a dog and it is not a snake then it is not dangerous with
probability 0.94

rule #17 If the animal is dangerous and it has legs then it is a dog with probability 0.90

rule #18 If the animal is dangerous and it is not a snake then it is a dog with

probability 0.90

rule #19 If the animal does not have wings and it is not a dog then it does not have legs
with probability 0.67
rule #20 If the animal is not a dog and it is not a bird then it does not have legs with

probability 0.67

Figure 2

as deriving rule bases for expert systems where a more flexible data-driven representation

is generally required.
The ITRULE algorithm derives a set of rules rather than a decision tree. A special case

of ITRULE, where it focuses on the class attribute alone (in terms of consequent clauses)

would be equivalent to the decision tree algorithms.

ITRULE.l is an initial implementation of the general ITRULE algorithm. The approach

taken was to simulate an example set using the prototype examples of figure 1. The

domain consists of the set of animals [dogs, reindeer, snakes, birds] described in terms of

the attributes antlers, wings, dangerous, legs, size. The number of examples generated for

each prototype is proportional to its probability. These probabilities were chosen rather

arbitrarily, e.g. large snakes are much more likely to be dangerous than not dangerous.



The results of the algorithm on this example set are shown in figure 2. The induced set
of rules represent the twenty most informative rules, listed in order from most informative

downwards. The are seen to correspond well with what rules a human might consider

important, capturing all the important concepts such as 'birds have wings,' 'snakes don't

have legs,' etc. The results on this simple problem are quite encouraging.

Conclusion

Having defined the problem of generalised rule induction, we proposed Shannon's informa-

tion measure as a natural and coherent model from which to build a solution. We showed

that the measure has desirable properties both as a measure of the goodness of a rule and
as a basic induction mechanism. Initial results with the ITRULE.l algorithm show that

the measure yields rules which are intuitive and common-sense to humans. Current and

future work is to build on the information theory principle and develop much more pow-

erful induction algorithms, addressing such problems as dealing with example sets which,

in a statistical sense, are not large.
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