
Proceedings of the International Joint Conference on Neural Networks, vol. 1, 875-880, July 1991

Incremental Learning with Rule-Based Neural Networks1

C. M. Higgins R. M. Goodman

chuck@electra.caltech.edu rogo@csvax.caltech.edu

Department of Electrical Engineering, 116-81

California Institute of Technology

Pasadena, CA 91125

Abstract

A classi�er for discrete-valued variable classi�cation problems is presented. The system utilizes an
information-theoretic algorithm for constructing informative rules from example data. These rules are
then used to construct a neural network to perform parallel inference and posterior probability estimation.
The network can be `grown' incrementally, so that new data can be incorporated without repeating the
training on previous data. It is shown that this technique performs comparably with other techniques such
as back-propagation while having unique advantages in incremental learning capability, training e�ciency,
knowledge representation, and hardware implementation suitability.

1 Introduction

The problem of learning to classify from examples can be described as follows. De�ne an attribute as a
variable which can take on a �xed number of values (not necessarily just two). Let there be a �xed number
of attributes and designate one of them as the class attribute. Then the problem of learning to classify
from examples is to learn to predict the value of the class attribute given the values of the other attributes
by looking at examples of instances of all the attributes.

It is a signi�cant advantage if such a system, having been trained on a set of examples, can later be
trained on an additional set of examples without repeating the training process on the �rst set. We refer
to this feature as incremental learning. For example, if such a system is found to have unsatisfactorily
learned the representation of a class, it may be provided with more examples of the class.

This task cannot be accomplished in general by looking at only �rst-order correlations in the attributes;
it requires higher-order information. Systems which collect all such higher-order correlation information
were proposed by Uttley ([1],1960). Uttley's system collects an amount of information exponential in
the number of attributes, much of which is not actually necessary for performing classi�cation. Systems
that randomly choose which higher-order correlations to store were among the �rst neural networks ([2],
Rosenblatt 1962). The \hidden nodes" in a back-propagation network ([3], Rumelhart and McClelland
1989) store such higher-order information; their (arbitrarily chosen) number decides the amount of such
information to store.

Rules form a natural framework for representing such information. We de�ne a rule as a conjunction of
attribute values on the left-hand (if) side and a single class attribute value on the right-hand (then) side.

If A = 1 and B = 1 then C = 1 with probability 0.96

The number of attribute values on the left-hand side of the rule is called the rule order. Included with
each rule is a strength which is the probability that the right-hand side is true given that the left-hand side
is true.

Our approach uses an e�cient algorithm to discover such rules based upon information theory. While
rules obviously provide a clear method of ascertaining what has been learned, we will also show that there
exists a straightforward method of constructing a neural network from the learned rules which can perform
classi�cation and posterior probability estimation. This network can be updated incrementally as desired.

1This work was supported in part by the Army Research O�ce under contract number DAAL03-89-K-0126, and in part

by DARPA under contract number AFOSR-90-0199.



2 Information Theory for Constructing Rules

In this section, we describe the information-theoretic measure for rule `value', and present an algorithm
for discovering rules from examples.

2.1 The J-measure

The key to discovering rules from examples is a measure of the value of a rule based on the given example set.
Such a measure for conjunctive rules called the J-measure has been developed by Smyth and Goodman[4]
based upon the work of Blachman[5]. This measure tells the information content of a rule with respect to
the example set.

Let a rule be de�ned as if y then x, where y is a conjunction of values of attributes and x is a value of
the class attribute. Then the J-measure is de�ned as follows:

J(X; y) = p(y)

�
p(xjy) log

�
p(xjy)

p(x)

�
+ p(�xjy) log

�
p(�xjy)

p(�x)

��

The probabilities are estimated from the training set of examples. The rule with the greatest J-measure is
the most informative.

2.2 The Rule Search Algorithm

Given a way to rank rules, we need a way to search the space of all possible rules in such a way as to select the
best rules without covering the entire space, whose size is exponential in the number of attributes. Several
search algorithms have been tried, including a constrained search of all the possible rules [ITRULE,[6]].
The following search algorithm searches a smaller subset of the space than previous algorithms by using
the examples directly as templates for rules.

Given a training set of examples, an obvious way to classify is to retain all the examples and match an
incoming example to be classi�ed to an example in storage. This is equivalent to regarding the examples
as very high-order speci�c rules. However, these rules will not match any example not explicitly contained
in the training set and also model the `noise' or randomness in the training set. Consider now if we could
decide which attributes in each example to remove in order to generalize the examples to rules which cover
more examples and remove the statistically insigni�cant `noise' in the data set; the J-measure provides just
such a way.

The algorithm for rule generation is as follows. If there are N attributes excluding the class attribute,
each initial rule is of order N . For each rule independently, do the following:

1. Calculate the J-measure for the rule. Call this rule the parent-rule.

2. For each of the child-rules generated by removing a single attribute from the parent-rule, calculate
the J-measure (If the parent-rule was order K, each of the K child-rules is order K � 1).

3. Choose the rule among the parent rule and the set of child-rules with the greatest J-measure. Special
cases:

(a) If two rules have the same J-measure, choose the one with the lower order.

(b) If two rules of the same order have the same J-measure, choose a random one.

4. If the chosen rule is not the parent rule, the chosen rule becomes a new parent rule; repeat the process
starting at step 1. If the chosen rule is the parent rule, terminate.

To learn rules incrementally, perform the above algorithm on each example in the initial training set.
Retain for each rule the original example which generated it. When more training data is available, use
the above algorithm on the new training data. On the rules generated from the previous training set, also
run the above algorithm with the change that child-rules now include those generated by adding back each
previously removed attribute; thus child-rules now have order one more or one less than the parent rule.
If the second training set was statistically similar to the �rst, the rules generated from the �rst set will



not change. However, if the second training set changes the statistics of the examples, the rules generated
from the �rst training set may have over-generalized or over-specialized. This modi�cation allows the rules
to become either more general or more speci�c if necessary. J-measures in all cases are calculated with
respect to the concatenation of the two training sets.

Before conversion to a neural network, duplicate rules can be removed to reduce the complexity of
the network generated. However, the weight of each removed rule should be added to its duplicate which
remains. Thus if a rule had �ve duplicates, it will have six times its original weight. This serves to preserve
the statistics of the original data set.

The algorithm for the initial rule set in which rule order strictly decreases must terminate in N + 1
iterations or less, where N is the number of attributes excluding the class attribute. This is because rule
order decreases every time and cannot decrease beyond zero. It is more di�cult to see a bound for the
number of iterations of the incremental algorithm. Clearly, they cannot exceed 2N , since this is the total
number of rules which can be generated from any example. The number of iterations depends upon the
smoothness of the J-measure search space. In our experience with the algorithm, it has never been noted
to exceed N + 2 iterations.

3 A Neural Network for Classi�cation

Once the rules are constructed, they may be used in parallel to compute the posterior probability of each
class. This approach to rule-based classi�cation was described in detail in [7].

Let the subset of all the rules whose left-hand sides are satis�ed by an example E in the training set
and whose right hand side conclude X = xj be called Rj. Then we estimate the probability that X = xj
as

log(p̂(xj jE)) = log(p(xj)) +

jRjjX
i=1

Wi;j where Wi;j = log
p(xj jyi)

p(xj)

Once the posterior probabilities are estimated, we need only choose the largest probability to make our
classi�cation decision.

The above formula provides a simple method of constructing a neural network[8]. Consider the network
of �gure 1. The input layer contains one node for each attribute except the class attribute. Each node in
the second layer represents a rule generated by the algorithm. Nodes in this layer are connected to the
input nodes of the attributes in the left-hand side of the rule which they represent; they output a 1 if the
left-hand side of the rule is satis�ed. The third layer contains a node for each value of the class attribute.
Each second-layer node representing rule i is connected to third-layer node j with a multiplicative weight
Wi;j. The bias of each third-layer node is � log(p(xj)). Each third-layer node sums its inputs, subtracts
the threshold and exponentiates the result. Thus, by the above formula, the output of each third-layer
node is the posterior probability of the class it represents. If desired, a winner-take-all stage can be added
to decide upon the most likely class.

4 Experimental Results

In this section, we show the results of experiments with the rule-based neural network to verify its e�ec-
tiveness as a classi�er and test the ability of the incremental algorithm.

4.1 Comparison with Other Approaches

We now compare the performance of our classi�er (given the whole training set at once) with several other
classi�cation schemes. The classical �rst-order Bayes classi�er was chosen for comparison as an example of
a system which does not use higher-order information. However, this system is very simple and performs
quite well for many data sets. The back-propagation network was chosen as a very successful `black box'
approach to neural network learning which uses higher-order information but is opaque to the user. Also
shown for comparison is a trivial method in which the class that appears most in the examples is always
picked (i.e. the most likely a priori class).



Figure 1: Rule-Based Neural Network

Optimal Maximum Back First-order Rule-based
Rate a priori Propagation Bayes Neural Network

LED 74.0% 17.0% 68.4% 68.2% 68.1%
Voting � 96.0% 53.3% 93.6% 91.1% 94.7%
Boolean 90.0% 67.3% 90.0% 67.5% 90.0%

Figure 2: Performance Comparison with Other Approaches

Three data sets were chosen for training. The �rst of these is the well-known LED digits problem in
which the system must decide which digit is being shown on a 7-segment display given the value of each
segment. Noise has been added to the examples so that the optimal classi�cation rate is about 74%. The
second data set consists of 435 voting records from a session of the 1984 US Congress [9]. Each example
corresponds to a particular congressman and the attributes correspond to their votes on 16 di�erent issues.
The system must decide on the party a�liation of each congressman. Not surprisingly, it is possible to
predict this very well. The third and �nal data set has been generated from the following boolean function:

x = (y1 � y2) + (y3 � y4) + (y5 � y6)

To introduce noise, the class variable x has a 10% chance of being `reversed' from its true state. Thus
the optimal rate on this data set is 90%. This data set is designed to require the use of higher-order
information.

The data sets were divided into disjoint training/testing sets for generating comparative results. The
splits were LED: 154/846, Voting: 200/235, and Boolean: 640/640. In each case, the training examples
were chosen at random from the entire data set and the testing set was the remainder. Ten random runs
were averaged to obtain the results shown.

It is clear that the rule-based neural network compares with the other classi�cation schemes. It performs
about as well as the back-propagation algorithm on all data sets, and succeeds in �nding the higher-order
representation that the Boolean data set demands and that the �rst-order Bayes classi�er is incapable of
generating.



Figure 3: Incremental Performance

4.2 Performance of the Incremental Algorithm

We now show the network's performance and the evolution of its size as it is `grown' example by example.
For this experiment the Boolean data set described in the previous section was used. While testing

on 640 examples, as in the previous section, training examples were given one at a time to the learning
algorithm. Classi�cation performance and network size were checked periodically.

The plot of �gure 3 shows that the classi�cation performance quickly approaches the optimal classi�-
cation rate of 90%.

We can see in �gure 4 the growth of the network's conjunctive second layer as more examples are
presented to it. Notice that the network quickly approaches a size of about 30 units after 200 examples,
at the same time that the classi�cation performance reaches 90%. It slowly builds to about 35 units after
all 640 examples.

5 Summary and Conclusions

Since it is clear that a number of classi�ers achieve near-optimal classi�cation performance, the choice of
algorithm should depend upon other factors. We have shown a neural network classi�er that is comparable
in classi�cation performance with other approaches, yet has several unique advantages.

First, the classi�er network may be `grown' incrementally. The network size and complexity is propor-
tional to the complexity of the problem and the amount that the network has learned. Performance of a
network `grown' incrementally is comparable to that of a network trained on the entire data set at once.

Second, the learning is performed with an algorithm which must terminate within a �nite number of
steps. This number is on the order of the number of attributes. There are no parameters of learning to
`tweak' in order to obtain the best possible performance.

Third, the rule-based nature of the network may be exploited in explaining a decision of the network.
For some applications, the ability to verify the reasoning behind a decision is crucial.

Finally, the algorithm is well suited for hardware implementation. Since each rule is formed indepen-
dently of all other rules, the rules can be learned in parallel. Currently in progress is a parallel VLSI
implementation of the incremental algorithm with binary attributes.



Figure 4: Growing the Network Incrementally

References

[1] A. M. Uttley, `The Design of Conditional Probability Computers,' Information and Control 2, 1-24
(1959).

[2] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Wash-
ington, DC: Spartan Books, 1962.

[3] D. Rumelhart, G. Hinton, and R. Williams. `Learning Internal Representations by Error Propagation.'
In D. Rumelhart and J. McLelland, editors, Parallel Distributed Processing 1. MIT Press, Cambridge,
Mass., 1989.

[4] P. Smyth and R. Goodman, `An Information-Theoretic Approach to Rule Induction in Databases,' to
appear in IEEE Transactions on Knowledge and Data Engineering.

[5] N. M. Blachman, `The amount of information that y gives about X,' IEEE Transactions on Information

Theory, vol. IT-14(1), 27-31, 1968.

[6] P. Smyth and R. Goodman, `The Induction of Probabilistic Rule-Sets: the ITRULE Algorithm,' Pro-
ceedings of the 1989 International Workshop on Machine Learning, Morgan Kaufmann: Palo Alto, CA,
pp. 781-787, 1989.

[7] R. Goodman, C. Higgins, and P. Smyth, `A Hybrid Rule-Based/Bayesian Classi�er,' Proceedings of the
1990 European Conference on Arti�cial Intelligence, Stockholm, Sweden, August 1990.

[8] R. Goodman , C. Higgins, J. Miller, and P. Smyth, `A Rule-Based Approach to Neural Network
Classi�ers,' Proceedings of INNC 90 Paris, International Neural Network Conference, Palais des Congres,
Paris, France, July 9-13, 1990.

[9] Congressional Quarterly Almanac, 98th Congress, Second session 1984, Congressional Quarterly Inc.:
Washington, D.C., 1985.


