
A LEARNING ALGORITHM FOR

MULTI-LAYER PERCEPTRONS

WITH HARD- LIMIT IN G

THRESHOLD UNITS

Rodney M. Goodman and Zheng Zeng

Department of Electrical Engineering, 116-81

California Institute of Technology
Pasadena, CA 91125

Tel: (818)395-3677, FAX: (818)568-3670
Email: rogo@micro.caltech.edu

Abstract - We propose a novel learning algorithm to train networks

with multi-layer linear-threshold or hard-limiting units. The learning

scheme is based on the standard back-propagation, but with "pseudo-
gradient" descent, which uses the gradient of a sigmoid function as a
heuristic hint in place of that of the hard-limiting function. A justi-

fication that the pseudo-gradient always points in the right down hill
direction in error surface for networks with one hidden layer is provided.
The advantages of such networks are that their internal representations
in the hidden layers are clearly interpretable, and well-defined classifica-
tion rules can be easily obtained, that calculations for classifications after
training are very simple, and that they are easily implementable in hard-
ware. Comparative experimental results on several benchmark problems

using both the conventional back-propagation networks and our learning
scheme for multi-layer perceptrons are presented and analyzed.

1 INTRODUCTION

S ingle-layer networks of linear threshold units (or hard-limiting units)
known as perceptrons have been shown to have very limited learn-

ing capacity [2]. Although multi-layer systems of such units are much
more powerful than single-layer ones, there has been no known learning
algorithm for such networks.

In recent years, networks with continuous, nonlinear activation func-
tions have been shown to be able to perform much more complicated
tasks than single-layer perceptrons. With the differentiable activation

functions, gradient descent can then be used to train such networks [4].
However, the internal representations of these networks have been

hard to analyze, due to the fact that their activation spaces are contin-
uous, and high dimensional. Multi-layer perceptron networks are thus
still of interest. In addition to easily understandable internal representa-

tions, classification rules can be readily obtained from trained perceptron
networks, the operations of the networks after being successfully trained
are extremely simple, and they are easy to implement in hardware.

In this paper, we attempt to solve the problem of training multi-

layer hard-limiting-unit networks by using non-zero values for logic O's
and 1 's, and by a pseudo-gradient descent learning scheme. Henceforth,
these networks will be called interchangeably, as discrete networks or
perceptron networks throughout this paper.

2 NETWORK ARCHITECTURE

output values

/7 :'~ ~,

' ~" /

input features

Figure 1: A network of perceptrons with a single hidden layer

Shown in Fig. 1 is a two-layer network of hard-limiting units. Note that
since the output layer is "discretized", such networks are therefore used

for classification or encoding problems. We use s}/) to denote the output
value of unit i in layer I, where the Oth layer is defined to be the input

layer, and w~) to denote the weight connecting from unit j in layer 1 - 1
to unit i in layer I. The operational equations for the network are:

s~/) - D (~ ~~) S ~/-l)) ul . (1)I - 0 L.,. WI]]' V , z,
j

{ 0.8 if 2: > 0.0

where Do(2:) = 0.2 if 2: "< 0.0. (2)

Note that the values 0.2 and 0.8 are used here instead of 0 and 1 in
order for logic "0" s to have some power of influence over the next lay-
ers. These values play an important role in the pseudo-gradient learning
which is explained in the following section.

3 PSEUDO-GRADIENT LEARNING

AND ITS JUSTIFICATION

Our learning scheme is based on the standard back-propagation method

[4], but with "pseudo-gradient" descent instead of gradient descent on

the error surface. A learning method based on a similar idea for training

recurrent networks was first introduced in [6, 7].

To explain the pseudo-gradient, we need to introduce another set of
values for the output and hidden layers, which we will call the analog

values of the units, as opposed to the discrete (hard-limited) values
that are actually used during network operations:

h~l) = /(net~I)), VI, i, (3)

where

net~l) = ~ w~~) s<:l-l)
(4)1 L.t IJ J

j

and

1/(x) = 1 . (5)+e-x

From (1) to (5), it is obvious that

S~I) = D (h~I)). .,

where

D(x) - { 0.8 ifx? 0.5- 0.2 if x < 0.5,

For the input layer, define h~O) = S}O) to be the ith input.
Let L be the output layer, the error function for an input pattern is

defined to be:

E = ~ L(h~L) - t..)2,
..

where t.. is the desired value for output unit i. For classification and
encoding problems, t.. is either 0 or 1.

4 EXPERIMENTAL RESULTS

Shown in Tables 1 through 4 are comparative experimental results of

using both the proposed discrete network training method and the stan-

dard back-propagation on the following bench mark problems, respec-

tively: exclusive or, iris data classification [1], sonar data classification
[3] and NETtaik [5]. All experiments are done with two-layer networks.
Detailed parameters are described in the corresponding captions.

of discrete networks conventional backprop
hidden # of avg # of # of avg # of

units successful runs epochs successful runs epochs
2 5 5000 3 4119
3 10 2920.9 10 1154.4
4 10 1801.5 10 642.6

Table 1: Comparative results on the binary XOR problem. All networks
have 2 input and 1 output units. Both the training and test data set

contain all 4 instances of XOR. The learning rate is 0.5, with no momen-

tum term and no weight decay. Error tolerance is 0.0000001, maximum

number of iterations is 5000. The "number of successful runs" is ob-

tained out of 10 runs with different random weight initializations. The

"average number of epochs" is the averages over the successful runs.

The training set of the XOR problem consists of all 4 examples of the
binary XOR problem. 10 runs are done with different random weight

initializations for each network configuration and each of the learning

schemes. In this experiment, we intend to compare the convergence

speeds of the two methods. A successful run is defined to be such that the

network converged within the given maximum number of epochs (in this

case, 5000) during training and gives correct outputs for all 4 examples.

Note that for networks with 2 hidden units, there are unsuccessful runs

for both learning schemes, which means that each of the corresponding

networks reached a local minimum, instead of a global one. The number

of unsuccessful runs for the two are comparable: 5 for our method, and
7 for standard back-propagation.

The iris data set consists of 3 classes of 50 instances each, where each
class refers to a type of iris plant. Attributes are different measurements
of the flowers. 10 runs are done by partitioning the data set and using
the subsets in a manner similar to cross-validation. In this experiment,
we aim at investigating and comparing the effects of momentum and

weight decay factors on the two learning schemes.
The sonar data set was used originally by Gorman and Sejnowski in

their study of the classification of sonar signals using a neural network

[3]. The task is to discriminate between sonar signals bounced off a

of mo- weight discrete networks conventional backprop
hidden men- decay avg % standard avg % standard

units turn factor correct deviation correct deviation
2 0.5 1.0 92.0 4.99 96.0 4.42
3 0.0 1.0 96.7 5.37 97.3 4.42
3 0.5 1.0 96.0 6.11 96.7 5.37
3 0.0 .99 95.3 6.67 94.7 4.99
3 0.5 .99 96.0 5.33 97.3 4.42
4 0.0 1.0 96.7 5.37 94.7 6.53
4 0.5 1.0 96.0 5.33 94.7 5.81
4 0.5 .99 94.0 6.96 97.3 4.42

Table 2: Comparative results on the iris data classification problem. All
networks have 4 input and 3 output units. The learning rate is 0.5, with
different momentum and weight decay factors as shown. Error tolerance

is 0.0000001, maximum number of iterations is 5000. The data set of

150 is randomly partitioned into 10 subsets, each of size 15. For each set
of network parameters, 10 runs are made by leaving out each one of the
subsets as the test set, and using the remaining 9 subsets as the training
set. Performance is averaged over the 10 runs.

metal cylinder and those bounced off a roughly cylindrical rock. There
are 208 patterns in total with 111 belonging to the "metal" class, and
97 belonging to the "rock" class. Again, for each network configuration,
13 runs are done, in a similar manner to the iris data experiment. The

purpose of this experiment is to compare the performances of the two

network structures with different numbers of hidden units. The network

configurations of the first 5 rows in Table 3 are the same as in [3], while

the last 3 rows are additional experiments we did to obtain a comparison

over a wider range.

The task of the NETtalk problem is to train a network to learn to
convert English text to speech. Inputs are windows of 5 letters, with
the letter to be pronounced in the center. Desired outputs are encoded
phonemes. Each input letter is unary encoded by a group of 27 units.
The training set consists of 1000 most commonly used words. The test
set consists of about 4000 words. In this case, the problem is of a par-
ticularly large size: 135 input, 22 output, and 15 to 120 hidden units,
about 5600 training examples, and close to 20,000 test examples. We

used this problem to test the performance of our network on very large

problems.

of discrete networks conventional backprop
hidden avg % standard avg % standard

units correct deviation correct deviation

2 73.08 11.60 82.69 8.55

3 72.60 8.33 85.58 6.66

6 80.77 7.93 85.58 6.19

12 85.10 9.02 86.06 6.08

24 86.06 7.00 82.21 8.79

36 83.17 7.10 82.69 10.73

48 78.85 9.35 71.63 20.89

60 77.88 11.91 56.73 21.44

Table 3: Comparative results on the sonar data set. All networks have 60
input and 2 output units. The learning rate is 0.1 for discrete networks,
and 0.2 for conventional backprop, with no momentum term and no
weight decay. Error tolerance is 0.001, maximum number of iterations is
300. The data set of 208 is randomly partitioned into 13 subsets, each of
size 16. For each set of network parameters, 13 runs are made by leaving
out each one of the subsets as the test set, and using the remaining 12
subsets as the training set. Performance is averaged over the 13 runs.

5 DISCUSSION

It can been seen that in general, the performances of the proposed dis-
crete network are comparable to those of the conventional back-propagation

network on all the benchmark problems.

From the results on the XOR problem, it is clear that the pseudo-

gradient training takes longer than the conventional back-propagation,
due to the inaccuracies introduced for gradient descent. However, we
should note that the operations needed for one epoch of training is almost
the same for pseudo-gradient as back-propagation, the only difference
being the discretization operations. The experiments on all the other

larger data sets were done for the same fixed number of epochs (300 to
5000) for both networks, so the comparative results shown in Tables 2 to
4 are in fact of training both networks for about the same time period.

The iris data set results indicate that adding a momentum term helps
to improve the performance of the discrete network but has an opposite
effect on the performance of the conventional back-propagation network.
On the other hand, weight decay helps to improve the performance of the
conventional network but has an opposite effect on the discrete network.
The reason for the phenomena is still under investigation.

For the sonar data experiment, it is expected that the performance of
either of the network structure goes up with the increase of the number of
hidden units, and drops after a peak has been reached. Note that it takes

of discrete networks conventional backprop
hidden % correct on ~ correct on ~ correct on ~ correct on

units training set test set training set test set
15 77.05 68.41 83.72 72.64
30 84.53 71.74 89.72 75.82
80 90.22 72.55 93.65 75.90
120 91.95 73.62 92.52 75.61

Table 4: Comparative results on the NETtalk data set. All networks

have 135 input and 22 output units. The learning rate is 0.1, with the
momentum factor being 0.9 and no weight decay. Error tolerance is
0.001, maximum number of iterations is 1000. The training set consists
of 1000 most commonly used words, with 5603 letters to pronounce in
total. The test set consists of about 4000 words, with 19994 letters to
pronounce in total.

more hidden units for the discrete network to reach the same optimum
performance as that of the conventional back-propagation network. The

reason for this can be that the internal representation capacity of a
discrete network is much less than that of an analog network, the former
having only two possible values for each unit, and the latter having

infinite values theoretically. On the other hand, for the same reason, it

also takes more hidden units for the performance of the former to drop,
after the optimum performance is reached, to the same level as that of
the latter. That is, the discrete network overfits more slowly than the
back-propagation network. Thus we gain the clear understanding of a

network by losing some representational power. However, note that the

performance differences of the two networks with the same appropriate
number of hidden units are not significant.

The results of the NETtalk experiments show that the discrete net-
work is able to find good solutions for such a large problem, and the per-
formance is comparable to that of the back-propagation network, though
always a little worse.

6 EXTRACTING RULES FROM THE

NETWORK

Using discrete units in the network facilitates the interpretation of the
network representation as discrete rules. For discrete binary inputs,
classification rules are extracted from the discrete network as follows.
Present the trained network with all combinations of inputs in the order

of the Gray code, with one input bit change at a time. For each output

unit, a truth table is thus constructed for the whole input space. Simplify

each truth table by the standard Quine-McCluskey algorithm to obtain

a logic expression of a minimum number of terms. Each term is then a

classification rule for the class represented by the corresponding output
unit. Note this rule extraction process guarantees that all rules extracted
cover every point in the input space, and are accurate descriptions of the
network.

For the XOR problem, the following rules are extracted for the single
output unit, with the two inputs represented by the symbols A and B,

respectively:

If A=low B=high then True. If A=high B=low then True.

For larger problems with data sets containing noise, rule extraction

often yields multiple high-order rules that are very specific in describing

the input space region for which they can fire. This means that the

network uses a very detailed partition in the input space for its classi-

fication purposes. It is expected that the less freedom (in terms of the

numbers of units and adjustable weights) the network is given, the less

detail such a partition will contain, and the more general the extracted

rules will be. In addition, training with validation to prevent overfitting

would result in less specific rules as well.

For problems with continuous input attributes, quantization can be

made a priori based on domain knowledge and/or information theoretic

criteria.

This rule extraction method is exhaustive, so all the rules extracted

together make a full description of the network classifier over the whole

input space. However, the computation grows exponentially with the

dimension of the input space. Research is underway to investigate ways
to efficiently generate rules according to, but not strictly based on the

network, and thus allowing more general lower-order rules.

7 CONCLUSION

A pseudo-gradient learning scheme for discrete networks, or multi-layer
perceptrons with hard-limiting units is proposed. For the case of single-

hidden-layer networks, we showed that the proposed pseudo-gradient
always points in the right down hill direction of the error surface. The

experiments on different benchmark data sets show that the discrete

networks have comparable performance to that of back-propagation net-

works. A clear understanding of the network is gained by the discrete
structure at the cost of some loss of representational power. An ex-

haustive method to extract rules that accurately describes the network

as a classifier is presented. The preliminary results are encouraging for

further study of such discrete networks.

Acknowledgments

The research described in this paper was supported by ARPA under

grants number AFOSR-90-0199 and NOOOl4-92-J-1860.

References

[1] R.A. Fisher, "The use of multiple measurements in taxonomic prob-
lems," Annual Eugenics, 7, Part II, 1936.

[2] M. Minsky, S. Papert, Perceptrons, MIT Press, 1969.

[3] R. P. Gorman and T. J. Sejnowski, "Analysis of hidden units in a

layered network trained to classify sonar targets," Neural Networks,

Vol. 1, 1988.

[4] D. E. Rumelhart,J. L. McClelland, and the PDP Research Group,

Parallel Distributed Processing, MIT Press, 1986.

[5] T. J. Sejnowski, C. R. Rosenberg, "Parallel networks that learn to
pronounce English text," Complex Systems, Vol. 1, 1987.

[6] Z. Zeng, R. Goodman, P. Smyth, "Learning finite state machines

with self-clustering recurrent networks," Neural Computation, Vol.

5, No.6, 1993.

[7] Z. Zeng, R. Goodman, P. Smyth, "Discrete recurrent neural net-

works for grammatical inference," IEEE Transactions on Neural
Networks, Vol. 5, No.2, 1994.

