Bach in a Box - Real-Time Harmony

Randall R. Spangler and Rodney M. Goodman*
Computation and Neural Systems
California Institute of Technology, 136-93
Pasadena, CA 91125

Jim Hawkins'
88B Milton Grove
Stoke Newington, London N16 8QY, UK

Abstract

We describe a system for learning J. S. Bach’s rules of musical har-
mony. These rules are learned from examples and are expressed
as rule-based neural networks. The rules are then applied in real-
time to generate new accompanying harmony for a live performer.
Real-time functionality imposes constraints on the learning and
harmonizing processes, including limitations on the types of infor-
mation the system can use as input and the amount of processing
the system can perform. We demonstrate algorithms for gener-
ating and refining musical rules from examples which meet these
constraints. We describe a method for including a priori knowl-
edge into the rules which yields significant performance gains. We
then describe techniques for applying these rules to generate new
music in real-time. We conclude the paper with an analysis of
experimental results.

1 Introduction
The goal of this research is the development of a system to learn musical rules from

examples of J.S. Bach’s music, and then to apply those rules in real-time to generate
new music in a similar style. These algorithms would take as input a melody such

*rspangle@micro.caltech.edu, rogo@micro.caltech.edu
tihawkins@cix.compulink.co.uk

958 R. R. Spangler, R. M. Goodman and J. Hawkins

o
b 1L

Figure 2: J. S. Bach’s Harmony For Chorale #1

as Figure 1 and produce a complete harmony such as Figure 2. Performance of this
harmonization in real-time is a challenging problem. It also provides insight into
the nature of composing music.

We briefly review the representation of input data and the process of rulebase
generation. Then we focus on methods of increasing the performance of rule-based
systems. Finally we present our data on learning the style of Bach.

1.1 Constraints Imposed by Real-Time Functionality

A program which is to provide real-time harmony to accompany musicians at live
performances faces two major constraints.

First, the algorithms must be fast enough to generate accompaniment without de-
tectable delay between the musician playing the melody and the algorithm generat-
ing the corresponding harmony. For musical instrument sounds with sharp attacks
(plucked and percussive instruments, such as the harp or piano), delays of even a
few tens of milliseconds between the start of the melody note and the start of the
harmony notes are noticeable and distracting. This limits the complexity of the
algorithm and the amount of information it can process for each timestep.

Second, the algorithms must base their output only on information from previ-
ous timesteps. This differentiates our system from HARMONET (Hild, Feulnzer
and Menzel, 1992) which required knowledge of the next note in the future before
generating harmony for the current note.

1.2 Advantages of a Rule-Based Algorithm

A rule-based neural network algorithm was chosen over a recurrent network or a
non-linear feed-forward network. Neural networks have been previously used for
harmonizing music with some success (Mozer, 1991)(Todd, 1989). However, rule-
based algorithms have several advantages when dealing with music. Almost all
music has some sort of rhythm and is tonal, meaning both pitch and duration of
individual notes are quantized. This presents problems in the use of continuous
networks, which must be overtrained to reasonably approximate discrete behavior.

Bach in a Box—Real-Time Harmony 959

Rule-based systems are inherently discrete, and do not have this problem.

Furthermore it is very difficult to determine why a non-linear multi-layer network
makes a given decision or to extract the knowledge contained in such a network.
However, it is straightforward to determine why a rule-based network produced
a given result by examining the rules which fired. This aids development of the
algorithm, since it is easier to determine where mistakes are being made. It allows
comparison of the results to existing knowledge of music theory as shown below, and
may provide insight into the theory of musical composition beyond that currently
available.

Rule-based neural networks can also be modified via segmentation to take advantage
of additional a priori knowledge.

2 Background

2.1 Representation of Input Data

The choice of input representation greatly affects the ability of a learning algorithm
to generate meaningful rules. The learning and inferencing algorithms presented
here speak an extended form of the classical figured bass representation common
in Bach’s time. Paired with a melody, figured bass provides a sufficient amount of
information to reconstruct the harmonic content of a piece of music.

Figured bass has several characteristics which make it well-disposed to learning
rules. It is a symbolic format which uses a relatively small alphabet of symbols.
It is also hierarchical - it specifies first the chord function that is to be played at
the current note/timestep, then the scale step to be played by the bass voice, then
additional information as needed to specify the alto and tenor scale steps. This
allows our algorithm to fire sets of rules sequentially, to first determine the chord
function which should be associated with a new melody note, and then to use that
chord function as an input attribute to subsequent rulebases which determine the
bass, alto, and tenor scale steps. In this way we can build up the final chord from
simpler pieces, each governed by a specialized rulebase.

2.2 Generation of Rulebases

Our algorithm was trained on a set of 100 harmonized Bach chorales. These were
translated from MIDI format into our figured bass format by a preprocessing pro-
gram which segmented them into chords at points where any voice changed pitch.
Chord function was determined by simple table lookup in a table of 120 common
Bach chords based on the scale steps played by each voice in the chord. The algo-
rithm was given information on the current timestep (Mel0-Te0), and the previous
two timesteps (Mell-Func2). This produced a set of 7630 training examples, a
subset of which are shown below:

MelO0 FuncO SoO BaO Al10 TeO Meli Funci Sol Bal All Tel Mel2 Func2
D ') S2 Bl A2 TO E I St BO A0 T2 C I
E 17 S1 B3 A0 T2 D V' S2 Bl A2 TO E I
F v SO Bl A2 Ti1 E I7 S1 B3 A0 T2 D v
G v SO BO A1 T2 F v SO Bl A2 Ti E 17

960 R R. Spangler, R. M. Goodman and J. Hawkins

A rulebase is a collection of rules which predict the same right hand side (RHS)
attribute (for example, Function0). All rules have the form IF Y=y... THEN
=x. A rule’s order is the number of terms on its left hand side (LHS).

Rules are generated from examples using a modified version of the ITRULE algo-
rithm. (Goodman et al., 1992) All possible rules are considered and ranked by a
measure of the information contained in each rule defined as

J(X;Y =y) =p(y) [p(-'vly)log (%) + (1 - p(zly))log (11;_%‘1;—))] (1

This measure trades off the amount of information a rule contains against the prob-
ability of being able to use the rule. Rules are less valuable if they contains little
information. Thus, the J-measure is low when p(z|y) is not much higher than p(z).
Rules are also less valuable if they fire only rarely (p(y) is small) since those rules
are unlikely to be useful in generalizing to new data.

A rulebase generated to predict the current chord’s function might start with the
following rules:

p(corr) J-meas
1. IF Melody0 E THEN Function0 I 0.621 0.095

2. IF Functioni V THEN Function0 V7 0.624 0.051
AND Melodyt D
AND Melody0 D

3. IF Functiont V THEN Function0 V7 0.662 0.049
AND Melody0 D

2.3 Inferencing Using Rulebases

Rule based nets are a form of probabilistic graph model. When a rulebase is used
to infer a value, each rule in the rulebase is checked in order of decreasing rule
J-measure. A rule can fire if it has not been inhibited and all the clauses on its LHS
are true. When a rule fires, its weight is added to the weight of the value which it
predicts, After all rules have had a chance to fire, the result is an array of weights
for all predicted values.

2.4 Process of Harmonizing a Melody

Input is received a note at a time as a musician plays a melody on a MIDI keyboard.
The algorithm initially knows the current melody note and the data for the last two
timesteps. The system first uses a rulebase to determine the chord function which
should be played for the current melody note. For example, given the melody note
“C”,’it might play a chord function “IV”, corresponding to an F-Major chord. The
program then uses additional rulebases to specify how the chord will be voiced.
In the example, the bass, alto, and tenor notes might be set to “B0”, “A1”, and
“T2”, corresponding to the notes “F”, “A” and “C”. The harmony notes are then
converted to MIDI data and sent to a synthesizer, which plays them in real-time to
accompany the melody.

Bach in a Box—Real-Time Harmony 961

3 Improvement of Rulebases

The J-measure is a good measure for determining the information-theoretic worth of
rules. However, it is unable to take into account any additional a priori knowledge
about the nature of the problem - for example, that harmony rules which use the
current melody note as input are more desirable because they avoid dissonance
between the melody and harmony.

3.1 Segmentation

A priori knowledge of this nature is incorporated by segmenting rulebases into more-
and less-desirable rules based on the presence or absence of a desired LHS attribute
such as the current melody note {(Melody0). Rules lacking the attribute are removed
from the primary set of rules and placed in a second “fallback” set. Only in the
event that no primary rules are able to fire is the secondary set allowed to fire. This
gives greater impact to the primary rules (since they are used first) without the loss
of domain size (since the less desirable rules are not actually deleted).

Rulebase segmentation provides substantial improvements in the speed of the al-
gorithm in addition to improving its inferencing ability. When an unsegmented
rulebase is fired, the algorithm has to compare the current input data with the LHS
of every rule in the rulebase. However, processing for a segmented rulebase stops
after the first segment which fires a rule on the input data. The algorithm does
not need to spend time examining rules in lower-priority segments of that rulebase.
This increase in efficiency allows segmented rulebases to contain more rules without
impacting performance. The greater number of rules provides a richer and more
robust knowledge base for generating harmony.

3.2 Realtime Dependency Pruning

When rules are used to infer a value, the rules weights are summed to generate prob-
abilities. This requires that all rules which are allowed to fire must be independent
of one another. Otherwise, one good rule could be overwhelmed by the combined
weight of twenty mediocre but virtually identical rules. To prevent this problem,
each segment of a rulebase is analyzed to determine which rules are dependent with
other rules in the same segment. Two rules are considered dependent if they fire
together on more than half the training examples where either rule fires.

For each rule, the algorithm maintains a list of lower rank rules which are dependent
with the rule. This list is used in real-time dependency pruning. Whenever a rule
fires on a given input, all rules dependent on it are inhibited for the duration of the
input. This ensures that all rules which are able to fire for an input are independent.

3.3 Conflict Resolution

When multiple rules fire and predict different values, an algorithm must be used to
resolve the conflict. Simply picking the value with the highest weight, while most
likely to be correct, leads to monotonous music since a given melody then always
produces the same harmony.

To provide a more varied harmony, our system exponentiates the accumulated rule

962 R. R. Spangler, R. M. Goodman and J. Hawkins

Table 1: Rulebase Segments

RHS REQUIRED LHS FOR SEGMENT RULES
Function0 Melody0, Functionl, Function2 110
Melody0,Functionl 380

Melody0 346

Soprano0 Melody0, Function0 74
Bass0 Function0, Soprano0 125
(none) 182

Alto0 Soprano0, Bass0 267
(none) 533

Tenor0 Soprano0, Bass0, Alto0, Function0 52
SopranoQ, Bass0, AltoQ 164

(none) 115

Table 2: Rulebase Performance

RHS RULEBASE RULES AVG EVAL CORRECT
Function0 unsegmented 1825 1825 55%
segmented 816 428 56%

unsegmented #2 428 428 50%

Soprano0 unsegmented 74 74 95%
Bass0 unsegmented 307 307 70%
segmented 307 162 70%

unsegmented #2 162 162 65%

Alto0 unsegmented 800 800 63%
segmented 800 275 63%

unsegmented #2 275 275 59%

Tenor0 unsegmented 331 331 73%
segmented 331 180 74%

unsegmented #2 180 180 67%

weights for the possible outcomes to produce probabilities for each value, and the
final outcome is chosen randomly based on those probabilities. It is because we use
the accumulated rule weights to determine these probabilities that all rules which
are allowed to fire must be independent of each other.

If no rules at all fire, the system uses a first-order Bayes classifier to determine the
RHS value based on the current melody note. This ensures that the system will
always return an outcome compatible with the melody.

4 Results

Rulebases were generated for each attribute. Up to 2048 rules were kept in each
rulebase. Rules were retained if they were correct at least 30% of the time they
fired, and had a J-measure greater than 0.001. The rulebases were then segmented.

These rulebases were tested on 742 examples derived from 27 chorales not used in
the training set. The number of examples correctly inferenced is shown for each
rulebase before and after segmentation. Also shown is the average number of rules
evaluated per test example; the speed of inferencing is proportional to this number.

To determine whether segmentation was in effect only removing lower J-measure
rules, we removed low-order rules from the unsegmented rulebases until they had
the same average number of rules evaluated as the segmented rulebases.

In all cases, segmenting the rulebases reduced the average rules fired per example
without lowering the accuracy of the rulebases (in some cases, segmentation even
increased accuracy). Speed gains from segmentation ranged from 80% for Tenor0 up
to 320% for Function0. In comparison, simply reducing the size of the unsegmented

Bach in a Box—Real-Time Harmony 963

rulebase to match the speed of the segmented rulebase reduced the number of
correctly inferred examples by 4% to 6%.

The generated rules for harmony have a great deal of similarity to accepted harmonic
transitions (Ottman, 1989). For example, high-priority rules specify common chord
transitions such as V-VT7-I (a classic way to end a piece of music).

5 Remarks

The system described in this paper meets the basic objectives described in Section 1.
It learns harmony rules from examples of the music of J.S. Bach. The system is then
able to harmonize melodies in real-time. The generated harmonies are sometimes
surprising (such as the diminished 7th chord near the end of “Happy Birthday”),
yet are consistent with Bach harmony.

4
€ < = :ﬁ_;_—o—; Z
~ | *J’__,},_:_;‘ - f_ ___,;__-,i., 4

Figure 3: Algorithm’s Bach-Like Harmony for “Happy Birthday”

Rulebase segmentation is an effective method for incorporating a priori knowledge
into learned rulebases. It can provides significant speed increases over unsegmented
rulebases with no loss of accuracy.

Acknowledgements

Randall R. Spangler is supported in part by an NSF fellowship.

References

J. Bach (Ed.: A. Riemenschneider) (1941) 371 Harmonized Chorales and 96 Chorale
Melodies. Milwaukee, WI: G. Schirmer.

H. Hild, J. Feulner & W. Menzel. (1992) HARMONET: A Neural Net for Harmo-
nizing Chorales in the Style of J. S. Bach. In J. Moody (ed.), Advances in Neural
Information Processing Systems 4, 267-274. San Mateo, CA: Morgan Kaufmann.

M. Mozer, T. Soukup. (1991) Connectionist Music Composition Based on Melodic
and Stylistic Constraints. In R. Lippmann (ed.), Advances in Neural Information
Processing Systems 3. San Mateo, CA: Morgan Kaufmann.

P. Todd. (1989) A Connectionist Approach to Algorithmic Composition. Computer
Music Journal 13(4):27-43.

R. Goodman, P. Smyth, C. Higgins, J. Miller. (1992) Rule-Based Neural Networks
for Classification and Probability Estimation. Neural Computation 4(6):781-804.

R. Ottman. (1989) Elementary Harmony. Englewood Cliffs, NJ: Prentice Hall.

