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Lifetime analyses of error-control coded
- semiconductor RAM systems
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Abstract: The paper is concerned with developing quantitative results on the lifetime of coded random-access

semiconductor memory systems. Although individual RAM chips are highly reliable, when large numbers of
chips are combined to form a large memory system, the reliability may not be sufficiently high for the given

application. In this case, error-correction coding is used to improve the reliability and hence the lifetime of

the system. Formulas are developed which will enable the system designer to calculate the improvement in

lifetime (over an uncoded system) for any particular coding scheme and size of memory. This will enable the

designer to see if a particular memory system gives the required reliability, in terms of hours of lifetime, for

the particular application. In addition, the designer will be able to calculate the percentage of identical
systems that will, on average, last a given length of time,

List of principal symbols 64 k RAMs just appearing will initially have a failure rate

A = chip failure rate ~uch worse ~an this. Thus, although system relia~ility is

R = chip reliability the probability of correct oper- mcreased by usmg larger RAMs, the need for ECC remams.
ation of a chip' The need for improved system reliability is of particular

Q = robability of chip failure concern if a large memory system is to be mass produced.

R p
li bil ' t For example, if a memory system has a 10% probability of

R = row re a I y .

R t li bili ' t failure after one year, we may turn the argument 'around'
s = sys em re a y ,

a = probability of system operating correctly, equal and say that on ave~age 10% of the manufa~turer s memory

t R systems are only gomg to last one year. This would clearly

0

bs

f hi . d d be unacceptable in many applications.n = num er 0 c ps m a co e row . '.
k b fd t . hi . In this paper, we assess the Improvement m memory-

= num er 0 a a-carrymg c ps m a row , , "

t ' f d system lifetime that can be obtamed by usmg error-control
r = error correc Ion power 0 co e , "

m = number of chip rows in memory system codmg. We are not concerned here wIth the partIcular form of

T (a) = system lifetime to probability level a with r bit coding ,used, as these are dealt ~th in the literature [2:-6] .

r ti . 'We derive general results that will enable a system desIgner
error correc on . ,

Tr(I/2) = median time to failure (mTTF) to g.et an accurate impressIon. of what codin~ will ~o fo~ any
JJ.r( 'Y) = a solution of the Poisson distribution particular memory system. Firstly, we, co~slde: chip failures

C (a) = coding gain and the need for ECC; next, system lifetime IS defmed and

r a general formula for the improvement in lifetime of a coded

1 Introduction system is defmed. This is then developed into a formula for

the median time to failure (mTTF). We then consider asymp-
The continued decrease in cost of semiconductor random totic results for the case of large memory systems, Finally,

access memory (RAM) chips makes the construction of very we develop a formula for calculating the time at which any
large memory arrays an economic possibility. Not only can given probability of system failure exists.

such arrays be used to form the basic core memory of large

computers, but also small size microcomputers can benefit 2 Chip failures and need for ECC
from large memory arrays for applications such as speech ., , , .. ,

processing picture processing intelligent terminals and data The predommant failure mode wrthm a RAM chip IS a stuck-

bases etc.' If large memory S;stems such as these are to be at' fault. In ~s ~ode, either an individual cell, or a whole row

increasingly used, it is essential that they should be reliable, or column Wl.fuin the X, Y memory array, appe~rs to be

and not require frequent servicing. Although an individual st~ck at a partIcular ~alue 0, ?! 1, on read. Alte~atlvely, the

RAM chip may have a quoted reliability of better than 10-6 ;hip ~an catastrophically ~ail, an~ e~ery locatl~n appears
failures/h, when large numbers of these chips are combined ,stuc~ . Thus err~r~ are stationary m time and chi~s. do not

to form a total system the reliability of the system becomes repair themseves m the sense that the error condition does
exponentially worse. In these cases, it is essential that some not &~ss. '" ,

form of error correction coding (ECC) be used to protect -~s as~ume that the chip fa~ure ~ate IS ~ven by ~ (e.g,
against data loss. A ~ 10 failures/h), w.here a fa.llure IS any stuck-at ~ault

LSI dynamic RAMs generally have a low failure rate of the w~lch, pr~vents the. chip op~ra,tmg co.rre~tly. If t = 0 IS a

order of 10-7 to 10-6 failures/h. In addition, there is a pomt ,m time at whi~h the chip IS functlonmg c.o.rrectly, then,

'learning curve' for devices as they appear on the market, assUffil~g con~tant ~ail~re rates [2] , the probability of correct

which means that the larger RAMs have a lower reliability operation at time t IS given by

than the smaller devices. For example, the current industry R = e-At (1)

standard 16 k-by-1 bit dynamic RAM has a quoted failure
rate of approximately 3 x 10-7 failures/h [1], whereas the where R is called the 'chip reliability'. The probability of

chip failure is given by
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Q = 1 - R = 1 - e-~t
( 2
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is RD, and the probability of system failure at time t is The efficiency (or rate) of the coded system is therefore

(1 - RD). kin, and its redundancy is (n - k)/n, Note that an uncoded
If we assume that memory chips fail independently at memory has (n - k) = O.

random, then the system mean time to failure [3] (M'n'F) is ut us assume that each chip row of the above memory is

coded by using a binary block code of length n bits, which is
(M1TF) = I/AD (3) capable of correcting any combination of , errors amongst

ut us insert some numbers to get accustomed to these the n bits: ~.e pr.ob~bility of correct operation of the row

equations. Consider a 4-megaword RAM system operating with (or row reliability) IS given by

a 16-bit microcomputer. Assuming that the memory is built r

( n ) , out of industry standard 4116 type 16k-by-l bit dynamic RR = L (I-R)/(R)n-. (4)

RAMs, then the system takes the form of an array with i= 0 k

16 columns and m = 4096/16 = 256 chip rows, and D =

4096 devices. Given a device failu~e rate of A = 3 ~ 10- 7 , If the memory system is composed of m rows, then the

then from eqn. 3, th~ system M'n'F IS 813 h or approXImately probability of correct operation of the system (system

on.e.month. Alterna,tlvely, from eqn. 2. we. fmd tha~ ~e prob- reliability) is the probability that all m rows operate correctly.

ability of system failure at th~ 48,h pomt IS ~%. ~his IS clearly Conversely, the probability of system failure is the probability

unacceptable for many appllc~tlons, ~nd Implies that, on that one or more chip rows fails to operate correctly, because
average, 6% of these systems WIll function correctly for only, + 1 or more errors have occurred in a single row. The system

48 h. reliability is therefore given by

3 System lifetimes Rs = (RR)m (5)

There are several ways to assess the improvement in 'lifetime' The problem we wish to consider is that of inverting the

of a memory system due to coding. First, it is possible to equation
calculate the mean time to failure (MTTF) for both coded

and uncoded systems. We have done this, but the calculation Rs = a (6)

is lengthy, and we prefer to omit it, as not much insight into i.e. inverting the equation

the problem is gained. Alternatively, mean time between

failures (MTBF) can be calculated if renewal times can be RR = (a)l/rn (7)

assuI me
thd: h '

d th lif t . T ( ) f to produce the solution t = T r(a), which is the lifetime for

n IS paper, owever, we consl er e e Irne r a 0 .

the system to be the time at which the probability of system the given level of performa?ce ~. , .

failure equals some value (1 - a). A special case is the time at We now. use an apprOXImatlo~ to eqn. 4 to.glve an appr,o~l-

h . h th b bil ' t f t '" il . 1/2 d thi t . . mate solution to eqn. 7. Consider eqn. 4; If the quantities
w IC e pro a I y 0 sys em la ure IS ,an s Irne IS .. .

th d ' t ' t '"-" ( TTF) '/n and ,(1 - R) are smaller than I, as IS certamly the case In

e me Ian Ime 0 lCWure m .

hi Ii , h h Ii bil ' .
II . dt s app cation, t en t e row re a Ity IS we approximate

by the Poisson distribution
4 General analysis of system lifetime

Consider a memory system to be composed of an array of n R ~ e-JJ f ~ where,u = n(1 - R) (8)

columns by m rows of RAM chips, as shown in Fig. I, The R i=O i!

RAM chips are assumed to be I-bit wide, so that the failure

of a single chip only affects I bit in a horizontal word. Fur- ut us define ,ur('Y) to be the solution to the equation
thermore, we assume that the first k colunms contain the .

data bits, where k is equal to the computer word size. The e-/l f. ~ = 'Y (9)

remaining (n - k) colunms contain the parity check bits. i=o i!

n chip columns
- Then the solution to eqn. 7 is well approximated by

~ .. .

k n-k I

(I - R) ~ - ,ur(a I 1m) (10)

D D D - - - D ThUS,frOmeqn:. 2 and 10,

,u (a 11m )l-e-At ~ r

D D 0 - - - - D That is, the system l;fetime is the solution

I I I I m chip rows
{ I

}I I I I t = Tr(a) ~ ~IOg I-~ (II)

I I I I Now, in all cases of interest, the ratio ,ur( al/m )/n will be small
D D D - - - D enough for :e a~ro:ation

log
(I -- ) - --

Fig. 1 RAM organisation n n
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to be very accurate. Hence, eqn. 11 becomes Let us apply eqn. 20 to the case of a k = l6-bit computer
word encoded with the n = 21 Hamming single-error-

Tr(a) ~ ..J:.- IJ.r(al/m) (12) correcting code. The rate of this code is kIn = 0.762 and

An eqn. 20 becomes

Foran uncoded memory,n=k,r=O,andwemaydefinethe CI(1/2) = 1.84 (21)
uncodedsystemlifetime as To (a), where, fromeqn. 12:

Q . .

I thi th . gl hi fuantltatlve y, s means at a sm e-c prow 0 memory

1 II will have a lifetime of approximately 1.8 times that of the
T o(a) ~ U lJ.o(a m) equivalent uncoded memory.

(13)

- 1 -I 5.3 Single-row, multiple-error correction
- ~ log (a ) Consider now m = 1, and increasing values of r. Table 1 shows

I r against IJ.r(1/2) and the coding gain Cr(1/2). From Table 1,In this case, the solution lJ.o(al/m) = log (a-I m) is exact and
can be derived directly. T.ble 1: Coding pin egeinlt r

In order to compare equivalent coded and uncoded r /lr(1/2) Cr(1/2)
systems, let us defme the 'coding gain' of the coded system 0 06931 1 X (kl )

Cr(a) to be the ratio of the system lifetime with coding, to 1 1 :678 2.4 x (k/~)
that of the system without coding. Thus, from eqns. 12 and 2 2.674 3.9 X (klnl

13, we have: 3 3.672 5.3 X (klnl

4 4.671 6.7 X (klnl

( 11m ) ( k ) 5 5.6702 8.2 X (kIn)

C (a) ~ IJ.r a - (14) 6 6.6696 9.6 X (kin)

r 1J.0(allm) n 7 7.66925 11.1 X (klnl

8 8.66895 12.5 X (kIn)

F th f th ",,' . dis t . d d . t 9 9.668715 13.9 X (kIn)

rom now on, e use 0 e - SIgn IS con mue an I 10 10.66852 15.4 X (kin)

must be inferred that our lifetimes and coding gains are
approximations. It can be sh~wn ~y direct numerical solution, it seems clear that 1J.r(1/2) ~ r + 2/3, and in fact it can be

however, that such ap~r°";1Inatlons are very accurate for shown (Appendix 10) that

memory systems of practIcal mterest.

5 Mediln time to flilure (mTTF) IJ.r(1/2) = r + 2/3 + ~ r-1 - ~ r-2 + . . . (22)

We may consider the median time to failure (mTTF) to be The coding gain for large r is therefore approximated by
truly representative of the system lifetime in the general

sense. Inthiscase,a= 1/2, and eqns. 12-14 become Cr(1/2) = (1.44r+0.196)~ (23)

1 n

(mTTF~ = T (1/2) = -IJ. (2-11m) (15)

r An r It is interesting to note that the relative improvement in

coding gain decreases rapidly with increasing r so that the
(mTTF) = ~ (1/2) = ..J:.-.uo(2-11m) (16) benefits of coding are subject to rapidly 'diminishing returns'.

0 0 Ak For example, in Section 5.2 we saw that, for k = 16, a single-

-11m

( )

error-correcting code increases the lifetime of a single word
C (1/2) = &~ ~ (17) by 1.84. If an n = 26 double-error-correcting code is used,

r 1J.0(2 11m) n the single-word lifetime is increased by a factor of 3.9 X

(16/26) = 2.4 over uncoded, which is only a factor of 1.3
Let us now consider some special cases. better than the single-error-correcting code.

5. 1 Uncoded memory
First, the uncoded case, i.e. r = O. Clearly then, 1J.0(2-l/m) = 6 Clse of memory with many chip rows
(11m) log 2 from eqn. 13, and eqn. 16 becomes It is clearly possible to extend the analysis of Section 5.3

1 0.693 to the case of multiple-chip rows, i.e. m = 2, 3 etc. However,

(mTTF)o = T 0(1/2) = ~ log 2 = ~ (18) we now consider the case of m large, i.e. a computer memory

with many chip rows. In this case, IJ.r(al/m) can be approxi-

This is, in fact, the exact value of mTTF for this case, as can mated by noting that
be verified directly.

1allm "" 1 +-loga (24)
5.2 Single-row, single-e"orcorrection - m

Next consider r = 1, m = I, i.e. a single-chip row with single-
error'correction. One can verify numerically that IJ.I(1/2) = and that, for small values oflJ.,

1.678, so that byeqn. 15:

r 1J.' lJ.(r+l)

1678 e-/l L - ~ 1-- (25)

(mTTFh = TI(I/2) = ~ (19) 1-0 i! (r+ I)!

An

and the coding gain is Thus, for large m, we have the approximation:

) ( ) lJ.r(al/m) = (r + 1),I/(r+l)m-l/(r+1) (log l/aY/(r+1)

1.678 ( k k .CI(1/2) = I;;g2 -;;- = 2.42 -;;- (20) (26)
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The system lifetime is then given by eqn. 12 as wish to fmd the time at which the system has a 1 % failure

probability. The uncoded system has a 1% failure probability
Tr(a) = .J.-IJ.r(al/m) (27) at a time given by eqn. 30, as To (0.99) = I/Akm(O.OI)=

An 9.76h.

From eqn. 31, the coding~n for the coded memory
The coding gain fromeqns. 14 and 26is then is C1(0.99) = 16/21V2x8yl00=86.2, which gives a

k coded system lifetime of 841 h (or approximately one month)
Cr(a) = - (r+ 1)!I/(r+l)lm"/(r+l) (loga-1)-r/(r+l) at the 1% point. Again, the argument may be turned around,

n I to say that, on average, 1% of these systems will only last

(28) one month.

For r> I, eqn. 28 can be approximated via Stirling's formula 7 Conclusions
for n! to be:

In this paper, formulas are developed which will enable a
C ( ) ~ ~ ~ ~ (29) system designer to calculate the improvement in reliability

ran e m log a that can be obtained by applying coding to a semiconductor

memory system. The designer first calculates the lifetime of
'. . . the uncoded memory system, and then simply multiplies

6. 1 MedIan tIme to faIlure wIth m large this by the coding gain factor to yield the coded system

The coding gain for m large can be found by putting a = 1/2 lifetime.
into eqns. 28 and 29. Table 2 shows the coding gain against In addition, the designer can use the formulas to calculate

Table 2: Coding gain against r what percentage of a particular mass-produced memory

C (1/2) system will last a given length of time.

r r By using these formulas, the system designer can assess

1 1.699 X ~ X mU2 whether or not a particular coding scheme (including no

n coding) will give his memory system its required reliability.

2 2.32 X ~ X m'"
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uncoded memory has, from eqn. 13, a lifetime of ,. ,

1 r IJ.I
T o(a) = - (1 - a) (30) e-/J L -:;- = 'Y

Akm 1=0 I.

and eqn. 28 becomes h . h . alid l' fi d d I d . . Iw lC IS v lor lxe 'Y an arge ran, m partlcu ar, to
- ~ 11/(r+l) r/r+l - -rl"+1 obtain the approxima~ion (eqn. 22) for 'Y =!. Our re.s~lt

C,.(a) - n (r + 1). m (1 a) (31) depends on the folloWIng well known facts from probabIlity

theory:

Let us use this formula in an example. Consider the I6-bit (a) If X is a Poisson random variable with mean IJ., and if
memory system defmed in Section 6.1. Taking (a = 0.99), we Y is a random variable with the ganuna density function
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r(n)-le-ttn-l,t>O, then Pr{X<n-l}=Pr{Y~,u}.. =) = +n1/2 +.!..( 2-1
Thus, if Fn(y) denotes the cumulative distribution function Y(1,n) ,un-1 (1 n x 3 x )
of Y, ,un-1 ("f) is the solution to the equation F n (.u) = I - 1.

(b)If Y1,Y2,"',Yn are independent, identically dis- -1/2
( X3-7X

) -1 ( 3X4+7X2-16 )tributed random variables, each with the geometric density + n "36 - n - 810

function e-t, t>O, the sum Y= Y1 +... + Yn has the

gamma distribution cited above. t (9 5 + 256 3 - 433
)(c) If Y= Y1 + Y2 +... + Yn is a sum of independent, +n-3/2 x x x

identically distributed random variables, and if Fn(y) is its 38880

cumulative distribution function, there is an asymptotic

expression (with respect to n) for the solution Y(1, n) to the 112x6 - 243x4 - 923x2 + 1472

)equation Fn(Y) = 1 - 1. This expression, the Cornish. Fisher + n-2 \ +...
expansion [8], can be viewed as a generalisation and inversion 204120
of the central limit theorem. It depends on the moments of. .
the Y' and the solution x of the equation This formula gives very good results even for modest values

j of n. For example, with n = 11, 1 = 0.1, we fmd (e.g. from

Table 26.5 of Reference 9) that x = 1.28155, and the first

-.!.-

I - e- t2 hdt = 1 four terms of the above expression give ,ulo(O.I) = 15.40704,

~ %' whereas the actual value is 15.40664.

In the special case 1 = !, we have x = 0, and the preceding
In the special case, where each Yj has the exponential density asymptotic expansion gives
e- t, a straightforward application of the formulas given in
Reference 8 yields the following expression for Y(1,n), ,un-l(!) = n-.!..+~n-l+~n-2+
which is, by our preceding remarks, also equal to,un-I("f): 3 405 25515 '"

On replacing n by n + 1, we obtain the advertised expansion
(eqn. 22), namely,

.

op.dt., Reference 7, section 5.3.3. 2 8 64

,u (!) = n + -+ -n-l --n-2 +
tlbld..Chap. 6,theorem 5 n 3 405 5103 ...'
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