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Any Code of Which We Cannot Think Is Good
JOHN T. COFFEY ano RODNEY M. GOODMAN

Abstract —A central paradox of coding theory has been noted for
many years, and concerns the existence and construction of the best
codes. Virtually every linear code is “good” in the sense that it meets the
Gilbert-Varshamov bound on distance versus redundancy. Despite the
sophisticated constructions for codes derived over the years, however,
no-one has succeeded in demonstrating a constructive procedure that
yields such codes over arbitrary symbol fields. A quarter of a century
ago, Wozencraft and Reiffen, in discussing this problem, stated that “we
are tempted to infer that any code of which we cannot think is good.”
Using the theory of Kolmogorov complexity, we show the remarkable
fact that his statement holds true in a rigorous mathematical sense: any
linear code that is truly random, in the sense that there is no concise
way of specifying the code, is good. Furthermore, random selection of a
code that does contain some constructive pattern results, with probabil-
ity bounded away from zero, in a code that does not meet the Gilbert—
Varshamov bound regardless of the block length of the code. In contrast to
the situation for linear codes, it is shown that there are effectively
random nonlinear codes which have no guarantee on distance. In
addition, it is shown that the techniques of Kol ov complexity can
be used to derive typical properties of classes of codes in a novel way.

I. INTRODUCTION

Ever since the pioneering work of Shannon, the existence of
good codes for arbitrary information channels has been known.
Shannon’s proof relies on the idea of picking a code at random,
and showing that such a code is good with high probability;
unfortunately, this gives us no indication of how such codes are
to be constructed. For the more restricted case where we use
Hamming distance to measure the “goodness” of a code, an
early result of Gilbert shows that a certain tradeoff of distance
versus rate is possible [1], [2]. Asymptotically, we have

H/(d/n)=1-R+o(1)

for the best codes over GF(q), where H,(x) is the g-ary entropy
function. Indeed, it can be shown that virtually every linear code
satisfies the Gilbert—Varshamov bound—a code picked “at ran-
dom” satisfies the bound with probability asymptotically ap-
proaching one. The work of constructive coding theory starts
with this premise and seeks to synthesize the codes. However,
the task scems extraordinarily difficult. Although it is possible to
construct infinite families of codes that have both rate and
relative distance bounded away from zero, there has until rela-
tively recently been no known constructive procedure for obtain-
ing codes which meet the Gilbert-Varshamov bound over any
symbol field. The recent breakthrough in codes obtained from
algebraic geometry has given such constructions for relatively
large symbol fields (g = 49) but so far there has been no corre-
sponding progress for smaller symbol fields. This phenomenon
has often been noted as a paradox of coding theory. Writing a
quarter of a century ago, Wozencraft and Reiffen summed up
the attitude of many information and coding theorists [3}

“It is unfortunately true that the search for good codes with
large |S| has thus far been unrewarding. However, as we have
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seen, almost all codes are good. Thus we are tempted to infer
that any code of which we cannot think is good.”

In this correspondence, we demonstrate the remarkable fact
that the last statement can be shown to be true in a strict for-
mal sense in the case of linear codes. Using the theory of
Kolmogorov complexity, we show that those codes which are
truly “random,” in the sense that there is no method for
specifying the code that is significantly more concise than simply
writing out the symbols of the generator matrix, must mect the
Gilbert—Varshamov bound. It follows that virtually all linear
codes meet the bound, because virtually all such codes are
effectively patternless.

Another consequence of this result concerns the probability
of picking a bad code. (Henceforth a code is “good” if it meets
the Gilbert—Varshamov bound and “bad” otherwise). If we pick
a code at random, the probability of picking a bad code goes to
zero exponentially. If we insist that the code has some minimum
amount of structure, and then make a random selection from
such codes, the probability of picking a bad code is much greater
than in the case of random selection from all codes. This is
because we have excluded very many (in fact, virtually all) codes
which are good, without excluding any bad codes. We show that
the probability of picking a bad code, given a random selection
from the set of codes that have some minimum amount of
structure, is bounded away from zero regardiess of the block
length. Thus random selection from the codes we are most likely
to think of is “quite likely” to produce a bad code. These results
hold even if we add the condition that the code is recoverable
from its compressed specification in polynomial time.

A natural asymptotic form of the encoding probicm is to
synthesize an infinite family of good codes using some fixed
procedure: we should be able to specify some fixed list of
instructions, which, together with an integer m, would be suffi-
cient to generate the mth code in the infinite sequence. We will
say that any such family of codes is computable. If the procedure
is executed in a time upper-bounded by a polynomial in m, we
will say that the family of codes is practically computable. It is a
consequence of our results that although virtually all infinite
families of codes are good, virtually all are also uncomputable in
the above sense. In addition, there is no reason to believe that
any infinitc family of codes is practically computable.

The general problem of deciding the complexity of producing
the best of various classes of codes (using various other mea-
sures of complexity) has attracted much interest [22]-[25]—
indeed, Bassalygo et al. [23] assert that these “can now rightly
be regarded as pivotal problems in the theory of correcting
codes.” We feel that the application of the techniques of
Kolmogorov complexity opens up a new avenue of inquiry into
the encoding problem. In addition, the techniques provide a
novel and intuitively appcaling way of analyzing the typical
behavior of classes of codes.

In Section II, we discuss the basic axioms of complexity
theory. In Section III, we outline the conventional proofs of the
Gilbert—Varshamov bound and discuss some basic related re-
sults. In Section 1V, the main results are obtained in which the
distance and randomness properties of a code are shown to b2
related. It is shown that for linear codes, all effectively random
codes must meet the Gilbert—Varshamov bound, and that a
weaker converse also holds. In Section V, we discuss the case of
general nonlinear codes, and show that the result does not apply
to this class: there are effectively random nonlinear codes that
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have no guarantee on distance. In Section VI, we show how
some aspects of the typical behavior of classes of codes can be
derived from a characterization of codes in terms of their
complexity.

II. KorMocorov CoMPLEXITY

We begin by discussing a general model of computation [4],
(5]. Informally, a Turing machine (TM) consists of a finite state
machine, a read-write head, and a two-way infinite tape. The
tape is ruled into cells, and each cell is occupied by a symbol
from a fixed alphabet 3 ={o, - -,0%} or else the cell is blank.
We denote the blank by o. The fixed control performs one of
the following actions: it can erase the current symbol on the
tape; it can overprint a new symbol; or it can move right or move
left one cell. The states of the finite control are {g,q;," - -, g},
and two states are distinguished: g, is the starting state, and ap
is the halting state. The computation continues until the state qp
is reached. Then the computation is over and the output is
whatever is written on the tape. The action of the Turing
machine is specified by its “next move” function that specifies,
given a state and a symbol, what state the finite control moves to
and what action it takes. More formally, a Turing machine is
defined to be a triple M = (P, K,5) where P and K are positive
integers and § is a function

8:{ay,"- Sqpo 1} X {0y, 0k}
={qy," ".ap} X {0y, ",0x,L,R}.

We characterize the current status of a Turing machine by its
“instantaneous description.”

Definition: The instantaneous description (ID) of a Turing
machine is a quadruple (g, ,u,0; ,v).

Informally, the machine is in state 4q,,, the symbol under the
read-write head is 0y, the string u is on the tape to the left of
the read-write head, and the string v is to the right of the
read-write head. (The string u is taken to begin at the leftmost
nonblank symbol on the tape; the string v is taken to end at the
rightmost nonblank symbol.)

Given a certain instantaneous description, ID,, the next-move
function of the Turing machine determines uniquely what the
next instantaneous description ID, will be. We write

(qp|’u1>0k,’”]) _’M(quiuzs(rkzavz).

We define the relation —j, on the set of IDs for t€ Z*
recursively: ID| -4 ID, for t > 1 iff there is an ID such that
ID; -, ID and ID -, ID,.

Informally, ID, -}, ID, if we go from ID| to ID, in ¢ steps
on the machine M. The relation —j is defined on IDs as
ID, -} ID, iff there exists 1 € Z* such that ID, -, ID,.

The importance of Turing machines is evident from Church’s
thesis: Any algorithm can be rendered as a Turing machine.
Although this statement is unprovable, relating as it does a
mathematical concept to the nonmathematical concept of “com-
putability,” it is virtually universally accepted as a de facto
definition of computability.

Definition: A function f: § — %% is said to be computable
iff there exists a Turing machine M = (P, K,§) such that 2,V
2, Cloy, -+, 0%} and for every x € 3§, we have (g, 7,0, x)
—=11€q,,4,04,y) where y = f(x) and A is the null string.

A universal Turing machine (UTM) is, informally, a general
purpose Turing machine. It takes as input a string x = p(M)p(w)
where p(M) is an encoding of a Turing machine M, and p(w) is
an encoding of the input to that Turing machine, and simulates
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the action of M on w. More exactly, the UTM takes the input
string, checks to see if it is of the form p(M)p(w), (if not, it goes
into an infinite loop), simulates the action of M on w, and if M
would halt with output y, then U also halts with the same
output.

For convenience, we fix a universal Turing machine that
accepts inputs in an alphabet of sizc g, and that has the lowest
possible number of states in the finite control. Clearly, p(M)
must have a certain structure if it is to represent a Turing
machine. The g-ary input p(w) neceds no such structure, how-
ever, so p(w)=w in this formulation.

Suppose that on a given input x, the UTM halts, leaving the
string y to the right of the read-write head. We say that v is
computed by U on x. We define the Kolmogorov (or Kol-
mogorov - Chaitin) complexity [6], [7] of a string s to be the
length of the shortest input to the universal Turing machine U
such that U accepts the input string and eventually halts leaving
s on the tape to the right of the read—write head.

Definition: The Kolmogorov (or Kolmogorov—Chaitin) com-
plexity of a string s is a function K: 0,1,---,g-1}*>Z
defined by

K(s)= min{]p”(q[,,)\,a(,,p) _’ﬁ(QP’)"U(»vs)}~

The following theorem summarizes the main properties of
this function.

Theorem 1:

1) There exists a constant ¢, such that K(s)<n + ¢, for any
s and n=|s|.

2) The fraction of n-tuples s with K(s)<n— c, is less than
q ‘.

3) The Kolmogorov complexity of a string is, in general,
uncomputable.

4) If s has length n and weight An, then K(s) < nH (M) + o(n)
for large n, where H,(x) is the g-ary entropy function
= xlog, x —(1-x)log, (1~ x)+log, (g -1 for 0 < x < 1.

Proof:

a) Consider the everhalting machine E that goes directly
from the starting state to the halting state. Let [p(E)| = C.
Then the input p(£)s to the UTM produces the output s,
so K(s)<|s|+C.

b) Consider the g-ary strings of length less than n — ¢,. For
every string of length n that has Kolmogorov complexity
less than n — ¢, there is by definition at least one corre-
sponding g-ary string of length less than n — ¢, associated
with it. The number of programs of length less than n — c
cannot be greater than the total number of g-ary strings
with less than this length, and that total is (g" ' —1)/
(g —1). Thus no more than (¢" ' ~1)/(g — 1) strings of
length n can have such a low complexity.

¢) Let L be an arbitrary natural number. Consider the follow-
ing program that generates a string s, of Kolmogorov
complexity K(s;)> L using the algorithm for computing
the Kolmogorov complexity.

* Generate all strings lexicographically: 0,1,--, g —
1,00,---.

¢ Compute the Kolmogorov complexity of each.

® Stop when the first string s, with complexity greater
than L is found.

® Report s and halt.
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The length of this program is B +log L for some constant
B =|p(M)|. For large L, B +log L < L, so for large L, the
string can be computed by a valid program of length less
than L, which contradicts the condition that K(s)> L.

d) Take 7 and An and generate lexicographically all strings of
length n with weight An.
Specify ‘which one of these is the string s. The program
takes

logq<(/\nn)(q —1)“'} +O(log,n)

symbols. Using Stirling’s formula for n! we can derive
n "
]034{(An )(q -* } =nH, (1) - O(log, n),

and so this quantity represents an upper bound on the
complexity of any sequence of length n and weight An, as
claimed. a

Following Kolmogorov and Chaitin [6]-[9], we say that a
string is random if its complexity is at least equal to its length. If
this is so, there is no concisc way of specifying the string—no
procedure is much better than simply writing out all the sym-
bols. A sequence which contains a pattern or obeys some law, on
the other hand, can be expressed by a relatively short sequence
of instructions to a universal Turing machine. The shorter the
program, the less random is the string. The crucial point is that,
as previously shown, virtually all strings of a given length are
almost totally random (where the meaning of the terms “virtu-
ally all” and “almost totally” are obvious from property b)). By
discussing the properties of scquences of high complexity, we
are in effect discussing the properties of typical sequences, and
it is this fact we will exploit later.

In speaking of the class of “low complexity” strings of a given
length, we do not mean that the complexity of such strings is
insignificant compared with that of the most random strings.
Rather, we imply that the number of strings with such a low
complexity is insignificant compared to the total number of
strings. We also note that property c) implics that, in general,
we can only acquire upper bounds on the Kolmogorov complex-
ity of a string. Thus if a string of length n is shown to have a
valid computing program of length n —¢, for reasonably large
¢,, we can definitely say that it has lower complexity than all but
a tiny minority of strings. However, it may or may not have a
complexity that is insignificant with respect to n.

Note also that in this formulation we are not concerned with
the running time of the shortest program. If we wish to allow
only programs that run efficiently, we can consider the time-
bounded Kolmogorov complexity, defined to be the shortest
program that will run on the universal Turing machine, halting
within r(n) steps, lcaving the desired output string on the tape.
The previous properties a), b), and d) still apply (the time
bounded Kolmogorov complexity is computable if the function
r(n) is computable). Typically, the function 7(n) is set to some
polynomial function of n. We will discuss this function later.

III. TuHe GILBERT —VARSHAMOV BounD

We being by discussing the basic statement of the bound, with
some related facts. Our treatment follows that of MacWilliams
and Sloane [10].

Theorem 2: There exists a linear (n, k) code over GF(g) with
minimum distance at least d, where d is the greatest integer

1455

satisfying
n—1 _ n—1 _yd-2 n—k
1+( ) )((1 )+ +(d_2)(q 1) <g" "~

Proof: Given the (n— k)X n parity check matrix H with
entries from GF(q), the code is defined as all those n-tuples x
for which Hx” = 0. If all combinations of d — 1 or fewer columns
of H are linearly independent, no nonzero vector of weight less
than d can satisfy this, so the minimum distance is at least d.
Thus it suffices to show that we can build an (n — k)X n parity
check matrix with this property provided d is as given in the
theorem. Suppose we have chosen i columns with the property
that no combinations of d —1 or fewer of them are linearly

dependent. There are at most £¢¢ j (g — 1)’ distinct linear

combinations of these i columns taken d —2 or fewer at a time.
Provided this number is less than g” % we can add another
column and still maintain the property that any d —1 or fewer
columns of the new matrix are independent. We can keep
adding columns as long as i is such that

R ) (R R PP [CR PE
i.e,aslongasi<n-1. O
Asymptotically we have
H/(d/n)>1-R+o(1)
where
H,(x)=xlog,(g—1)— xlog,x —(1— x)log, (1—x)

for 0 <x <1.

Many classes of codes have becn shown to be asymptotically
good in the sense that they mect the Gilbert—Varshamov bound.
These include linear codes, alternant codes [11], generalized
BCH codes [12], Goppa codes [13], double circulant (quasi-cyclic)
codes [14], shortened cyclic codes [15], and self-dual codes [16].

In many cases, the following result [10] suffices to show that
most members of a class of codes meet the Gilbert—Varshamov
bound.

Theorem 3 [10]: Let @ ={®,,®,, -} be an infinite family of
linear codes over GF(g), where @, is a set of (n;, k;} codes such
that 1) k,/n;> R and 2) each nonzero vector of length n;
belongs to the same number of codes in @, Then there
arc codes in this family which asymptotically meet the
Gilbert—Varshamov bound.

Proof: Let N, be the total number of codes in &@;, and let
N, bc the number that contain a given nonzero vector. If we
write out all the nonzero words in all codes in the class and
count them in two different ways, we get (g% — DN, =(g" — )Ny
The number of nonzero vectors of weight d or less is T{_ 157)
(g —1)" and so the number of codes with minimum distance d or
less is at most N, X7 ](7)(q —1) and the fraction of codes for

which this is true is at most

N, le (’})(ql)"/No= [i (',-’)(q—l)']

(q*-1)/(a" - 1)

— qn[Hq(d/n)f(l -R)]+o(n),

and this fraction goes to zero cxponentially as n — if H,/(d/n)
<1-R. O
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For the case of linear systematic codes, we can modify this
procedure to consider only sequences which are nonzero in the
first k bits. We find that the fraction of such codes with
minimum distance d or less is at most

d .
Z [(ftl ) _ (n 7 k )](q —1)ig R = g HAd/m=( “R)+o(m),
1

i=

so again we conclude that for large n, virtually all linear system-
atic codes lie on or above the Gilbert—Varshamov bound.

It can also be shown [17] that virtually no linear codes over
any symbol field lie significantly above the bound, in the sense
that the fraction of codes with H/(d/n)>1~ R+ e tends to
zero for any € > 0. The bound is thus important as an indicator
of the average behavior of codes. It is still not known if the
bound is tight; in the binary case there exists a significant gap
between the best upper bound on the asymptotic size of a code
(the McEliece-Rodemich-Rumsey—Welch linear programming
bound [18]) and the Gilbert—Varshamov bound. The resolution
of this discrepancy is perhaps the most basic theoretical open
problem in coding theory. It has long been conjectured that the
Gilbert—Varshamov bound is in fact tight for binary codes
(though it is now known to be loose for some larger symbol
fields [19]).

To put all this in an information theory context, the bound
represents a bound on the reliability function for the binary
symmetric channel. Following Berlekamp [20], we let P(N, M)
denote the probability of error of the best code having M
codewords of block length N for a given channel. For conve-
nience, we define the rate in natural units as R, =(In M)/N,
and the reliability function as

1
E(R,) = /\}imx A P,(N,[expR,N])

assuming that the limit exists. (This is a special case of the more
general reliability function E(R,, L) that takes advantage of list
decoding, with L =1.) We define the average guaranteed error
correcting power as

d(n,lexpR, n

where d(n, M) is the greatest possible minimum distance in a
binary code of length n with M codewords (as before, we
assume the limit exists). Now E(R,) depends implicitly on the
channel. For the binary symmetric channel with crossover prob-
ability p, we define the reliability function for the BSC, E(R,; p).
Then we have [20]

" E(R,;p
e(R,) = lim ¥
p—0 np

As p goes to zero, the “expurgated” lower bound on
— E(R,;p)/Inp becomes the Gilbert—Varshamov bound on
e(R,). The conjecture that the Gilbert-Varshamov bound is
tight is equivalent to the conjecture that E(R,) coincides with
the expurgated bound for the binary symmetric channel.

IV. Complexity and the Gilbert—Varshamov Bound

It is well known that every linear code is equivalent to a
systematic code [21]. Instead of picking the entries of a genera-
tor matrix at random, we pick a systematic code according to the
following rules: the generator matrix G is assumed to be of the
form (I|P), where I is the k X k identity matrix, and P is an

arbitrary k& X(n — k) matrix. We will call P the parity matrix.’
There are ¢*"~*) possible choices for P; each specifies exactly
one code. Suppose we know R exactly. Then to specify the code,
we can write out the parity matrix P row by row, to get a string
of length k(n — k)=n?R(1 — R) symbols. If R is known exactly,
such a string can represent exactly one code. Thus the string
specifies the code, and to specify the code it is necessary and
sufficient that we specify the corresponding binary string.

Definition: The defining string of a linear systematic code ¢
over GF(q) is the string

s//={p~l" ! 'ﬂﬁiv' ' .7ﬁk}
where p, = {p,_,,- "D Pi,—«), and where the generator
matrix of the code has the form G =(J|P).

In a slight abuse of notation, we say that the Kolmogorov
complexity of a code is the Kolmogorov complexity of the string
that defines the code.

Note that we have assumed a fixed R in this. There are two
ways of dealing with this: cither the fixed R is assumed to be
known always, or we place some unambiguous encoding of the
rate before the string of length n?R(1— R) to specify the code.
The second method adds some fixed constant to the complexity;
as we will see later, this is not important. We could also regard
the length of the string as given, and speak of the conditional
Kolmogorov complexity of the string. Once again, our conclu-
sions would not be altered by adopting this convention.

Theorem 4: Let ® be an infinite sequence of codes over some
fixed symbol field GF(q) all of which have rate exactly R. Let
the jth code have length n, minimum distance d, and defining
strings s;. Then there exists a constant C,, such that

K(s;)<Cy+n’R(1~ R)~n[H,(d/n)—(1- R)| +o(n)
for all j.

Proof: We outline a program for a universal Turing ma-
chine that calculates the defining string of the code. The parity
matrix P consists of k rows, each containing n — k symbols. We
label the ith row of the generator matrix r;. The code has
minimum distance d; suppose we are given any codeword of
weight d. The first k& symbols of this n-tuple represent an
information scquence i, while the last n~ k symbols represent
the parity check sequence p. Let the support of the information
vector i be {@;, -, a,}, where m is the number of nonzero
symbols in the information sequence. Clearly, the specified
codeword is of the form c:E;’Llﬁjr%, where the B’s are
nonzero elements of GF(g). In other words, ¢ is a sum of
multiples of m rows of the generator matrix; which m rows
these are can be determined from the first k& symbols. Suppose
we are given ¢ (the codeword of weight d) and all the rows of
the parity matrix except one—that one being the last row
involved in the sum that represents ¢ (i.e., row «,, in the
notation previously given). Then it is a simple matter to recover
r,,, by calculating r, =g, '(c —X" lBjrc,/). Hence the defining
string of the code is calculable from the given information. We
have only to calculate the length of the program. We need an
encoding of the Turing machine that performs the calculations,
a specification of the low weight word, and specification of all
rows of the parity matrix except one. The coding of the machine
takes a constant number of symbols; the rows of the parity
matrix take (k —1)(n — k) symbols, and for the low weight word,

'We apologize for any confusion between the parity matrix P and the
parity check matrix H. Also the distinction between the entropy function
H,(x) and the parity check matrix H should be clear from contex.
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we give the value of d (taking [log, d] symbols) and then say
which word of weight ¢ the low weight word is (taking

[logq((:;)(q - 1)")‘ symbols). Using the relation (A';)(q — DM
< gD o we find that the program has length at most

C,+n’R(1- R)—n(1—R)+nH,(d/n)+o(n)

where C, is the length of the encoding of the Turing machine,
and this is then an upper bound for the Kolmogorov complexity
of the code string, as claimed. : O

Equivalently, we could use the fact that the parity check
matrix H has the form H=(— P7|I) [21], wherc P is an
(n — k)X k matrix and I is the (n — k)X (n — k) identity matrix.
Given a codeword, we know that the corresponding columns of
H sum to 0. We can thus omit onc column of H, saving n — k
symbols, deriving it from the given codeword.

Corollary: Virtually all long systematic linear codes satisfy the
Gilbert—Varshamov bound. More precisely, for any o > 0, the
fraction of systematic linear codes over GF(gq) for which
H/(d/n)<1— R~ o is less than q ™"t for all n.

Proof: From property b) of Kolmogorov complexity, the
fraction of codes with complexity n?R(1— R)—n(1—R)+
nH,(d /n)+ o(n) is less than
qn[Hq(d/n)—(l —R))+o(n)
and if H,(d /n)<1-— R, this fraction goes to zero cxponentially
with increasing n. O

The previous result also implies the following interesting and
important obscrvation, the main point of this correspondence.

Theorem 5: For any positive constant C, there exists a con-
stant n,, such that the following statement holds truc: any lincar
code of block length n>n, and rate R over GF(q) that has
Kolmogorov complexity no less than n*R(1— R)—C, symbols
must have minimum distance d satisfying H (d/n)>1- R+
o(1), i.e., must satisfy the Gilbert~Varshamov bound.

The term “random coding” is particularly apt: random selec-
tion is virtually certain to producc a good code; however, it is
also virtually certain to produce a “random” code! The two
classes turn out to be correlated. In the spirit of Wozencraft and
Reiffen, we assert that “any code which is sufficiently random is
good.”

Comparing our derivation to the standard one given in Sec-
tion III, we see that wc have cffectively followed the same
method: the pigeonhole principle guarantecs that most codes
are good. Now, however, we have simultaneously classified the
codes according to complexity, and have found that it is pre-
cisely the set of high complexity codes that provides the guaran-
teed good codes.

The standard for a code being patternless is that a factor
linear in the block length cannot be saved. This corresponds, for
cxample, to saying that there is no row in the parity matrix, no
diagonal, no column, which can be compressed down to any
given percentage of its length. Our standard for “randomness”
is thus in some ways quite generous: we allow the random
selection of all but a linear number of bits, then insist only that
the remaining lincar number should allow compression to a
percentage of its length. We nced to ask about the converse of
the previous result: given a code of low complexity, what is the
probability that the code is bad?

We consider a modified random coding argument. We are
given some budget B, a constant which is arbitrary but fixed,
with which we are to design a procedure for constructing a code.
A procedurc is judged to be within budget if the shortest
encoding p(M) of a Turing machine M that will carry out the
procedure has length no greater than the budget. To compen-
sate for the extra overhead involved in specifying the Turing
machinc, the procedure must be able to savc at least a linear
amount of complexity in the specification of the code, ie., we
must be able to generatc a code string of length n?R(1—- R)
given no more than n°R(1— R)— no symbols, for some constant
o:; we will take o to be at most 1— R. We randomly select a
procedure which obeys these rules (we avoid the halting prob-
lem by either randomly selecting from those programs that halt
inside some given computation time or use an ‘“oracle” to
decide which programs halt leaving a valid codestring on the
tape) and refer to the result as a random C(B, a) code. We have
the following result.

Theorem 6: For sufficiently high budgets, random selection of
a C(B,o) code results with probability p>q~®*P>0 in a
code which has minimum distance d satisfying

H/(d/n)<1-R—o+o(l)
rcgardless of the block length n.

Proof: The restrictions on the codes imply that each code

string has complexity K(s) < B + n’R(1 — R)— no symbols. The
number of codes with this complexity is certainly less than
gB AR -no by the pigeonhole principle. We now count the
number of bad codes that have sufficiently low complexity. For a
given n, pick d* to be the largest integer such that
+- n i nl-R—o]
El(,-)(qgl)scz ’
From our previous arguments, a code with a minimum distance
<d* can be calculated by giving an encoding of a Turing
machine M (containing the values of both R and o), the
specification of the lowest weight word (taking log, Zle(’:)
(g — 1) symbols) and the remaining words of the parity matrix
P. (Note that the values of n and d* are implicit from the length
of the input and the values of R and o). The program thus
takes

d*
C, +log, Y {(7)(4(7 1)'} +n*R(1— R)—n(1—-R)
i=1
< Cy+ n*R(1— R) — no symbols.

We take the “sufficiently large” condition on the budget B to
mean that B > C,. Now every code with minimum distance less
than d* is reprcsentablc by a program meeting the requirements
set out in the statement of the theorem. The familiar argument
given in Scction III yields an upper bound on the number of
codes with distance less than the Gilbert-Varshamov bound.
We scck a lower bound on the number of such codes.

Let Ni{n,d*) be the number of “valid” distinct choices of i
distinct nonzero n-tuples, cach of which has weight d* or less
and a leading nonzero coefficient of 1, where a choice is valid if
there is any systematic linear code which contains that set of
codewords. Let §,(n) be the number of systematic linear codes
containing a given valid set of i nonzero codewords, averaged
over all valid sets of i nonzero codewords. Let T(n,d*) be the
number of codes with minimum distance d* or less. By the
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principle of inclusion and exclusion, we have
T(n,d*) = N(n,d*)S,(n)— Ny(n,d*)S,(n)
+ Ny(n,d*)S§;(n) = -+

where the, sum is overestimated by taking an odd number of
terms and underestimated by taking an even number of terms.
We need only N, N,, §,, and §,.

We have
N.(n,d*)=§[(’})—("j")](q—l)"‘,

and

Ny(n,d*) = dz((?)_(n;k))("_l)jﬂ ~ Ey(n,d*),

i=1
2

where E,(n,d*) represents the number of unordered pairs of
nonzero codewords each of weight < d* that have the same
nonzero sequence in their first k& symbols. We also have

Sl(n)=q“‘*“("_k) Sw(n)zq(kfb(nfk).
Thus
T(ﬂ,d*) > N,(n,d*)sl(n)7 Nz(n,d*)Sz(n)
d

2,}; H(”‘(” i k)}(q-l)’}q(k—u,,;,()
[fé <( )_(”;k)}(q _1)"]2,1“2)(";(,

S E(
3 E[0-(7 e s

Noting that (" - ")/(") <(1—- R), we have

and

d d
T(n,d*) an3R(J—R)—nu(]+0(l))

> anR(nR)—na—l

for sufficiently large n. Thus picking a C(B, o) code at random
gives a probability of at least g2~ of picking a bad code. O

Of course, there are codes of low Kolmogorov complexity that
do meet the Gilbert-Varshamov bound. The simplest example
is the code produced by the following program: for a given n
and k, generate all codes lexicographically; for each code,
determine the minimum distance; stop when we find the first
code that meets the bound, report that code and halt. The
problem, however, is that the running time of this program is
exponential in the block length. There are more efficient algo-
rithms [2] based on the same idea, but none with subexponential
running time. Our result shows that even with unconstrained
running time, random selection of a low complexity code has a
certain minimum likelihood of producing a bad code. Moreover,
by considering the time-bounded Kolmogorov complexity men-
tioned earlier, and setting 7(n) equal to some polynomial func-
tion n* or greater, we have the same lower bound on the
probability of selecting a bad code (because our described
procedure for bad codes has running time which is o(n?)) while
we have now no reason to believe that the upper bound for this
probability is less than one.

It is possible to reverse our argument, and thus to derive
many of the same conclusions in a different way. From Section
HI, we know that the fraction of linear codes over GF(g) with
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H(d/n)<1-R~¢ isat most ¢~"“*“) Thus it is possible to
write a program that indicates that the string to be specified
represents a bad code, and then say which of the strings
representing bad codes is the one to be specified. As there are
no more than ¢ RI-R=notetn gugtematic linear codes over
GF(q) satisfying H,(d/n)<1- R - o, the Kolmogorov com-
plexity of the defining string of any such code is upper-bounded
by

K(€)<n’R(1- R)~ no + o(n).

Thus, again, any code that is effectively random must satisfy the
Gilbert-Varshamov bound. Converscly, assume that the fraction
of codes with H(d /n) <1~ R— ¢ is exactly g %" Ro) where
g(n, R, o) is defined appropriately. Any such bad code can then
be represented by a program of length < Cy+n’R(1-R)
—[g(n,R,a)] symbols, where C, is the length of the formal
description of the Turing machine. Then suppose we have a
budget B> C,, as before, and that we select codes at random
from the set of codes with Kolmogorov complexity at most
B+n’R(1— R)~[g(n,R,0)] symbols. There arec at most
gB R R TR0 RO] Grined of the required complexity, and
there are exactly g" !~ ®=xnRo) pad codes among them.
Thus the probability of picking a bad code is at least g8+ as
before.

Although this argument is briefer than the one already given,
it obscures some points we want to make. First, we wish to show
that many of the main characteristics of a class of codes can be
derived in a simple and intuitive way from the consideration of
the Kolmogorov complexity of the defining strings of the codes
(where the defining strings are defined in a way appropriate for
the class). We illustrate the point in Section VI, and in [26], we
use the same idea to analyze the complexity of a decoding
procedurc for general linear codes. Second, we wish to show
that in the random selection from relatively low complexity
codes, the “badness” of a fraction of the resulting codes is
proportional to the amount of complexity we save, in the sense
given in Theorem 6. Third, we recall that our main concern lics
in discovering the polynomial-time-bounded Kolmogorov com-
plexity of codes. Comparing the two arguments given, we note
that in the first case, our Turing machine program runs in o(n?)
time, whereas in the second case, there is no reason to believe
that the program runs in polynomial time. This means that in
Theorems 4-6, we can substitute “polynomial-time-bounded”
Kolmogorov complexity for unrestricted Kolmogorov complexity
without altering the validity of the results.

It may appear that our suggested program for calculating the
code string of a bad code is quite a loose upper bound, but in
fact this is not so: our upper bound for the complexity of a bad
code is tight for virtually all such codes. By an elementary
application of the pigeonhole principle, we see that the fraction
of codes for which K(s)< K (s)~(Cy+1)=C, is less than
g~ for any constant C,, where K,(s) is the upper bound and
the constant C; is the length of the encoding of the Turing
machine M already described.

The following result is now obvious: most codes that have any
nonzero vector of weight less than the Gilbert—Varshamov bound
have exactly one such vector. This follows from the way T(n, d*)
is derived, but also because a code with rwo words of weight less
than nH;'(1- R— o) for any o > 0 can be represented by a
program of length

<n’R(1- R)=2n(1—R)+2nH,(d /n)+ o(n)
=n*R(1—- R)-2no +o(n)
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and is thus of significantly lower complexity than cven the
average code that does not meet the bound.

It is also clear from the discussion of Theorem 4 that the
radius r of virtually all linear codes over GF(q) satisfics
H/(r/n)= I1-R+ o(1), where the radius of a code is defined
[10] as the maximum distance between any two codewords.

V. NonLINEAR CODEs

In the case of nonlincar codes, we find that a new formulation
is needed to represent the codes. The lack of structure also
manifests itsclf in the much higher Kolmogorov complexity of
most of these codes. Once again, when we speak of “high-" or
“low-complexity” codes, we are implicitly using these terms in a
relative way.

We have the following argument. An {n, M] nonlinear code
over GF(q) is a collection of M distinct g-ary n-tuples. Let the
function f(n, M) be such that the number of [n, M ] nonlinear
codes over GF(g) is ¢/-™. Then [ f(n, M)] g-ary symbols is
the minimum amount required to be able to specify any of the
codes. The complexity of the code is defined to be the complex-
ity of the string of [ f(1n, M )] symbols which specifies it. Let d
be the minimum distance of the code ¢. Then there are two
codewords w, and w, which are such that wt(w, —w,)}=d. We
can specify the code using the following procedure: specify the
[n, M —1] code obtained by deleting w, from ¢, specify which
word in the expurgated code is w,, give the n-tuple w, + w, of
weight d, and reconstruct w, from that information. We need
[ f(n, M —1)] symbols to specify the expurgated code, [log, M1
symbols to specify which codeword is w,, and at most nH (d /n)
+ o(n) symbols to give the n-tuple of weight d. This must be
close to f(n, M). So

nH,(d/n)+ AR +o(n)= f(n,M)— f(n,M—1)

for most codes. Now f(n, M) = logq(‘}";), SO

f(n.M)—f(n,M—l)=10g,,—Q)—
(")
=log,((¢"-M+1)/M)

=n(1-R)(1+0(1)),
and we find that
H/(d/n)=1-2R+o(1)

for most nonlinear codes.

Alternatively, we can specify the code by writing out each
codeword in turn to get a string of length nM symbols. If we
view the order in which we place the codewords as significant,
any string of length nM symbols represents a nonlinear code
with at most M codewords. If code € has minimum distance d,
there are two codewords ¢, and ¢, that arc separated by an
n-tuple of weight d. To compute the code string, it is sufficient
to do the following: specify the code string corresponding to the
code ¢, obtained by removing word ¢, from €. Specify which
word in this subcode is ¢,, give the n-tuple of weight d, which is
¢, —c,, then say where c, is located in the codc string for .
We have

n(M—-1)+k+nH/(d/n)+k+o(n)=nM

for most codes (where k = nR =log, M), or H{(d /n)>1-2R
+ o(1) as before.

In contrast to the situation for linear codes, the Gilbert—
Varshamov bound does not scem to be automatically mct by
high complexity codes—indeed, for R >1/2, we have no guar-
antee of distance at all.

Of coursc, we have merely derived a lower bound on distance
for most codes, and we should ask how tight this bound is. This
question can be interpreted two ways: 1) are there really binary
nonlinear codes that are almost totally random that have
H/(d/n)=1-2R for R<1/2and d - 0for R>1/2? 2) is the
average behavior of nonlinear codes really bclow the
Gilbert—Varshamov bound? The answer to both questions is
yes.

For the first question, we apply the pigeonhole principle
again. Assume that this is false for all high complexity [n, M — 1]
codes, i.c., Hq(d/n)z 1-2R+eforR<1/2,and Hq(d/n)z €
for R>1/2, for somc € > (.

We take a high complexity nonlinear [n, M —1] code over
GF(q), a word from that code, and another n-tuple at distance
d* < d from the selected codeword. The total number of results
is

ftn .M~ l)f('anqnHu(d’/n)+('| Iogqn.

q
Each result can arise in at most two ways from the above
constructions, because d* <d, so the total number of [n, M]
codes we get is

qf(n.M)—n(l —R)ytnR+nHd*/m)+o(n)

If R>1/2, we find that the number of distinct [n,M] codes
over GF(q) is greater than g/t *"CR=D_ contradicting the
definition of the function f(n,M). Similarly, for R<1/2, if
H,/(d/n)=1-2R+ ¢ for all high complexity codes, we would
find that the number of [#, M] codes over GF(q) is greater than
g/ MrFnexotn g contradiction for positive e.

We should now suspect that this bound is tight for a signifi-
cant fraction of nonlinear codes. Indeed, suppose that the
fraction of codes over GF(q) for which this is tight is a(n, R).
Then, as Martin-Lof has pointed out [27], we can save at least
log,, a(n, RY+ O(1) symbols in the specification of any code for
which the bound is tight. If a(n, R) tends to zero with increasing
n, then the bound cannot be tight for any random code, contra-
dicting the aforementioned 1). Thus we conclude that the bound
is tight for a fraction of nonlinear codes that is bounded away
from zero.

It is possible to obtain the following stronger result.

Theorem 7- The fraction of nonlinear [n,g"%] codes over
GF(q) satisfying

H,(d/n)>max(1-2R,0)+«

a

for any a > 0 is less than g™«

Proof: First note that if this is true for R=1/2, it is trivially
true for R >1/2. So we take R <1/2. Select M codewords at
random from all g” possible sequences, and let X be a random
variable denoting the number of unordered pairs of codewords
at distance < d from each other. We can find E(X) and E(X?)
and hence can bound Pr(X = 0) using Chebyshev’s inequality.

Let X,; be a random variable that takes the value 1 if the ith
and jth codewords are at distance < d from each other, and 0,
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otherwise. Then X =%, _ X;;, and so [28]
d

)y (';)(4—1)'

)=

m= E(X)_ Z E(XI])

i<y
Also
E(X)= ¥ X;X;.
NN
i<j
k<l
We find that

(7)a-v

I M

E(X2)=(A2/[)(M2_2) I]? (1+0(a™))
d
Z (q—l)
— (1+0(¢™))
d
Z (q—l)

M 1—1
+(2) q" -1

where the first term represents the products X;,X,, where i, j,
k, and [ are all different, the second term represents the
products where #(i,j, k,/)=3, and the final term represents
products where (i, j) =(k,I). Then

o} (X)=E(X*)- E¥(X)
1
=sM°p(1+0(M ")+ 0(p)) + p*0(q ")O(M*)
= M1+ 0(1)

where p=TY{ 1( / )(q —1//(g"=1). Thus o%(X)=O(E(X)).
Chebyshev’s inequality then gives

2( )
Pr(X= 0)< =0(E"(X)).
Finally,
d
o E (@
E(X)= =1
&9 ( 2 ) q"—1
___qn[Hq(d/n)f(l—2R)]+o(n)
and the theorem follows. 0

We conclude by showing that the probability that a randomly
selected code will be significantly better than the Gilbert—
Varshamov bound (i.e., H/(d/n)=1- R+ o for some o > 0) is
upper bounded by a function that goes to zero as a double
exponential. A necessary condition for the code to have mini-
mum distance d is that any given codeword should have no
other codeword within distance d —1. We pick an initial code-
word at random, and then complete the code by selecting the
other M —1 codewords. The event that there is no codeword
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within distance d of the first codeword will have probability

"R
_ _ q
< (1 —gd Hq((]/n))+o(n))
ner+oin)
_ _ 4;14I—llu(d/uy)w:(m q
= [(1 -q a(l H‘,t(l/n))+n(n))
o
—>e 9

as n becomes large.

VI. Other Crasses oF CODES

We feel that the ideas in Kolmogorov complexity provide a
useful and intuitively appealing tool for analyzing various prop-
erties of codes. By writing a Turing machine program to calcu-
late the defining string of a code, and by observing that the
length of this program cannot be significantly less than the
logarithm of the number of codes in the class in most cases, we
obtain a simple inequality yielding the typical behavior of the
class of codes. We restrict oursclves here to two examples to
illustrate the idea. Alternative proofs of the properties below
can be found elsewhere [29], [30].

Consider the class of shortened cyclic codes over GF(2). An
(n, k) shortened cyclic code is defined by a generator polyno-
mial g(x) of degree n — k, and the code consists of all n-tuples
¢ that in polynomial representation are of the form i(x)g(x),
where deg i(x) < k. If we assume that g(x) is a monic polyno-
mial, the code is uniquely representable (given n and R) by the
string (g, _4_y,* * -, &) This is a binary string of length n(1— R);
virtually all such binary strings have Kolmogorov complexity
close to n(1— R) bits. Suppose the code has minimum distance
d. Then we can specify g(x) by giving a codeword of weight d,
and then specifying which factor of the codeword is g(x). Piret
has shown [29] that a polynomial of degree n over GF(2) can
have at most 2" /187X o) digtinet factors, so we need O(n /
log ) bits to specify the generator given a codeword. Overall, to
specify the value of d, the codeword of weight d, and the
particular factor of the codeword, requires a program of length
nH,(d /n)+ O(n /log n) bits. Now the Kolmogorov complexity
of a shortened cyclic code is at least n(1— R)— C for all but a
fraction of at most 27¢ of all such codes. Thus the fraction of
codes for which Hy(d/n)<1—R—a +o(1) for o >0 is less
than 277" for all n. Therefore virtually all shortened cyclic
codes meet the Gilbert—Varshamov bound.

Note that modified forms of Theorems 4 and S apply here
also. Bad codes (with Hy(d/n)<1— R~o for o >0) have
Kolmogorov complexity at most n(1— R — o + o(1)) bits; con-
versely, random selection from codes with Kolmogorov complex-
ity at most n(1— R — o + o(1)) bits results with nonzero proba-
bility in a code with Hy(d /n)<1-R—o.

Now consider the class of linear concatenated codes with
Reed-Solomon outer codes and varying nonsystematic inner
codes. We show that there are codes in this class that meet the
Gilbert-Varshamov bound. Let the outer code have block length
N and rate R, and let the inner codes have rate r = 1. Thus to
encode, we form the Reed-Solomon codeword in the usual
manner to get (cy," "+, cy_,) where the ¢;’s are elements from
GF(2"), and then apply a “template” (r(,,'- ,rn_ 1) where the
ri’s are also from GF(2") to get the resulting codeword
(c(,r(),“-,cN,er,]). Finally, we interpret each symbol from
GF(2") as a string of # bits. Clearly, the codc has length Nn and
rate R. Our choice of template decides the code. We show
that virtually any choice yields a code meeting the Gilbert—
Varshamov bound.

Clearly, given n and N, the template can be represented by a
string of length Nn bits, and any string of this length represents
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exactly one template. Most such templates have Kolmogorov
complexity close to Nn bits. Now if we are given a codeword of
weight d, and the first NnR bits of the template, we can recover
the remaining bits: we are given (cyrg," *,cy_1ry_,) and
(rg,"" ", ryg-1)s from which we calculate (¢, *»cNr—1), then
(cyp> - Cn—y) and finally (ryg,- - -, ry_ ). Thus by the familiar
argument, NnH,(d /Nn)+ NnR + o(Nn)> Nn - C for all but a
fraction of at most 27 ¢ of all such codes, i.e., H)(d /Nn)>1—-
R — 0(1) for most such codes. Once again, suitably modified
version of Theorems 4 and 5 apply.

VII. CONCLUSION

We have seen that the fact that most linear codes meet the
Gilbert—Varshamov bound is a consequence of the fact that
most of these codes are effectively random. Thus the common
complaint given in the title of the paper is no mere accident, but
a fundamental principle of coding theory. We have also demon-
strated that a converse holds: codes that are not effectively
random have a certain nonzero probability of lying below the
Gilbert—Varshamov bound. Furthermore, in a certain sense, the
less random the code is, the further away from the bound it is
likely to be.

Sometimes it may be desirable to regard a code as random
unless it can be recovered from a significantly compressed
specification in polynomial time; even with this interpretation,
the previous results hold.

The behavior of nonlinear codes contrasts sharply with that of
the linear codes, and the statement of Wozencraft and Reiffen
cannot be said to apply to them. In both cases, the behavior of
any effectively random string is used to bound the distance of
“most” codes in the class. In the case of linear codes, the bound
obtained happens to coincide with the best known lower bound
for the best codes.

By characterizing the average behavior of a class of codes in
terms of the properties of the most random (“typical”) codes in
the class, we have introduced a novel and intuitively appealing
way of analyzing average properties of codes. The approach can
be used to derive results on classes other than general linear
and nonlinear codes; we intend to report these results in a
future communication.
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On the Decoding of Algebraic—Geometric Codes
Over [, for ¢ > 16

SERGE VLADUT

Abstract —It is proved that for algebraic—geometric codes on a curve
over [, for g >37 or on a curve of sufficiently large genus over F, for
q > 16 there exists a polynomial decoding algorithm up to (d*-1/2
errors, d* being the designed minimum distance.

I. INTRODUCTION

Algebraic-geometric (or AG-) codes were discovered by
Goppa [1]. It was found that they have many remarkable proper-
ties, many of them described in [2]. Decoding AG-codes has
been on open problem for some time. Justesen et al. [3] pro-
posed an algorithm for the decoding of AG-codes that was
generalized in [5]. This algorithm decodes an AG-code, roughly
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