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'W In this paper we examine the greedy mutual information algorithm for decision tree

I design, analysing both theoretical and practical applications (namely, edge detec-
.;- tion). We review our earlier theoretical results on tree design algorithms such as 1

l ill3, which confirm that the greedy mutual information heuristic is well-founded.
~ The theoretical models based on rate-distortion theory and prefix-coding analogies

explain previously observed experimental phenomena reported in the literature. An

application to edge detection is described where we primarily emphasize the

inductive methodology rather than the domain application (image processing) per se.
We conclude that inductive learning paradigms based on information-theoretic
models are both theoretically well-behaved and useful in practical problems.

1. Introduction

This paper develops and applies ideas from information theory for use in learning
algorithms. We concentrate on the area of decision trees and review our recent

theoretical work on the mutual information decision tree design algorithm. A new

application of this algorithm is reported, where we formulated edge detection for

image processing as a classification problem. We show how the algorithm learned to
detect edges and yielded new domain-specific information about the problem.

'" 1.1. BACKGROUND

i Rule induction from large data sets is currently receiving attention in the areas of
machine learning and expert systems. Classifier design from labelled training

l' samples is a problem which shares many characteristics with the rule induction
problem. A recent paper by Bundy, Silver & Plummer (1985) provides a useful

discussion of how the two problems relate to each other.
The basic premise of many rule induction mechanisms, when the data is

probabilistic rather than deterministic, is to induce a hierarchy or decision tree as a
representation of the relationships between the attributes (evidence) and the classes
(hypotheses). Hence general relationships between classes and attributes are
induced or learned by the induction mechanism. Note that the terms attributes and
classes occur more often in pattern recognition literature than the terms evidence

and hypotheses which tend to be used in the artificial intelligence domain. For the
purposes of this paper we adopt the former.

When the attribute-class relationships are probabilistic rather than deterministic,
the induction mechanisms which work best appear to be those based on statistical
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and/or information theoretic techniques, e.g. the ID3 algorithm (Quinlan, 1983)

based on information theory, the CART system (Breiman, Friedman, Olshen &

Stone, 1984) for medical diagnosis, or PREDICTOR (White, 1985), a rudimentary

inference tool, the latter two based on statistical techniques. Perhaps the best known

inference mechanism of this type is the ill3 algorithm since it has already been

implemented as part of an expert system design tool (Michie, Muggleton, Riese &

Zubrick, 1984) which in turn has been used to design systems for weather
forecasting (Riese, 1984) and fault diagnosis (Stuart, Pardue, Carr & Feldcamp,

1984). Many more recent applications are reported by Michie (1987).

1.2. OUTLINE OF THE PAPER
In this paper we concentrate on the average mutual information heuristic for rule

induction from large data sets, of which the ill3 algorithm is an example. After .

defining the general mutual information induction algorithm we briefly review our

earlier work in this field. Primarily we have defined a general information theoretic

model for this induction problem. From this model we develop several general .

principles. The model enables us to understand why algorithms like ill3 work so

well in practice and from it we can confirm conjectures such as those of Quinlan

(1986) and others. In the second part of the paper we apply the algorithm to the

problem of edge detection in images. The resulting induced edge detectors are both
computationally faster than 'manually' designed operators and, perhaps more
significantly, yield new knowledge for this problem domain. The overall conclusion
reached from both theoretical and practical considerations is that the mutual

information induction mechanism is indeed a powerful tool and merits further

research and applications.

2. The mutual information decision tree algorithm

The algorithm we are about to describe is a general algorithm which derives a

decision tree from a large data set of labelled samples using the average mutual

information function in a 'greedy' fashion to find the most informative attributes "-

relative to the class. Instances of this algorithm may vary considerably depending on
the termination rules used, where a termination rule is essentially a mechanism for
deciding that no more attributes are relevant or need not be tested. Hence Quinlan's "

ill3 algorithm with the Chi-square termination test (Quinlan, 1986) is a specific

case, as are several others in the pattern recognition literature (Sethi & Sarvarayudu

(1982), Casey & Nagy (1984), and Wang & Suen (1984». Recent work by Smyth

(1988) and Chou (1988) provide more extensive bibliographies on such 'top-down'

tree design algorithms. It is worth noting that there are extensions to 'top-down'

algorithms, such as the pruning algorithms of Breiman et at. (1984) and Chou,

Lookabaugh & Gray (1988), which have recently received attention. In addition to

being computationally costly, these pruning algorithms begin by growing an initial
tree, typically using the greedy algorithm we are about to describe. Hence the

performance of this algorithm is fundamental to the quality of most existing tree

design techniques.
Consider that one is given a table of data as in Fig. 1. The table consists of M

samples drawn from the population at large. Each sample is described in terms of N
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Samples Attributes Classificatian
label

A I A 2""""""""""""'.. AN

1 0 35 c red c 4

2 I 16 blue c 2

3 1 42 green CII

I I I I I

I I I I I

I ~ I I I I

I I I I I

I I I I I

I I r' , I

"

M 0 32 red C 4

FIG. 1. Typical table of sample data.

1;

attribute values and a class label. For example the samples could be plants described

in terms of height, number of flowers, etc., or medical case-histories in terms of

presence or absence of certain symptoms. It is important to realise that the table is

probabilistic rather than deterministic, i.e., there may be 'overlap' in the class-

attribute conditional probability distributions.

If all known attributes are given then the algorithm will inherently select the most

relevant attributes and ignore the irrelevant ones. This is an additional advantage of

the mutual information approach over conventional classification techniques since it

yields valuable information on the relative importance of the various attributes. In

applications such as medical diagnosis this can be quite useful (Breiman et al.,

1984). We assume that the sample size is sufficiently large to yield reliable estimates
of the class distribution conditioned on the values of the N attributes.

C is defined as the class random variable with a discrete alphabet of K

, components such that p(C = cJ = Pi' E~lP; = 1, 1:5 i:5 K where c; is the ith class.

Then H(C) = E~lP; log IIp; is the entropy of C.
There are N attributes each denoted by A;, 1:5 i :5 N. In turn, each attribute A;

i; has n; values which it can assume; n; is finite, i.e. the attribute values are quantised.

I(C; AJ is the mutual information (as defined by Shannon) between C and Ai- In

practice the probabilities are estimated from the data using standard statistical

estimation techniques.

Now let us consider the algorithm itself. Essentially it just deals with one

tree-node at a time. The initial node (root node) consists of the original table of data

samples, i.e., unconditioned on any attribute values. Susbequent nodes r~sult from

evaluating certain attributes and obtaining sub-tables conditioned on the outcome of

all prior evaluations. The algorithm continues to process nodes until there remain no

candidate nodes, i.e., the tree has been grown and all leaves and internal nodes

defined. The algorithm may be implemented recursively using a stack to store

unprocessed nodes. New nodes which are not leaves are pushed onto the stack and
'popped' off later to either yield more new nodes (child nodes) or be declared a leaf.

The algorithm is defined in pseudocode in Fig. 2.
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tree( )
begin
if(node_list is not empty)

{
node = node_list(topnode)

if (node is a leaf)

{
increment leaf_list

tree() }

else

{

A = maximum information attribute
for (each value of A) {

sort data table

increment node_list}

} .
}

else return( )

end

FIG. 2. Pseudo-code description of the tree classifier design algorithm. .

Apart from the bookkeeping aspects two functions in the algorithm remain to be

defined, namely the 'leaf-or-not' and 'max-information-feature' functions. It is these

two functions which characterize any 'top-down' tree derivation algorithm, i.e.,

(i) determine if the node is a leaf

(ii) if it is not a leaf then determine the feature or attribute which yields the most

information at that node, i.e., choose Ak such that

I(C; Ak) ~ I(C; AJ 1 s i S N,i * k

or equivalently,

H(C I Ak) S H(C I AJ 1 S i s N, i * k.

In the next section we summarise our recent work on this algorithm.

3. Theoretical results for the algorithm

Prior work on this algorithm has been applications motivated, as for example the

various applications reported in the field of optical character recognition (Casey & .

Nagy, 1984; Wang & Suen, 1984). The work of Quinlan (1983, 1986) has suggested
that the algorithm can be used in the more general domain of rule induction from

examples. Hence our work in this field (Goodman & Smyth 1986; 1988b) has been

directed towards a better understanding of the algorithm with a view to applications

in rule induction for expert systems. In particular we examined such issues as

average path length/misclassification rate trade-offs, the effect of increasing the

noise on the termination rules and the overall effectiveness of the mutual

information heuristic. In this section we present a brief summary of these results.

We begin by modelling the problem in a communication theory setting. This

communication theory model was recently suggested by both ourselves and Chou &
Gray (1986) who proposed an equivalent rate-distortion model. Essentially the

classification problem is equivalent to a communications problem where one is

communicating through a noisy channel at a variable rate. The noisy channel
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represents the overlap in the class-attribute conditional probability densities, and is
equivalent to the noise which Quinlan discussed (1986) (note that this noise is due to
the inherent ambiguities imposed by a particular set of features in a given problem).
The general idea is to transmit the most informative bits (or attributes) to give the
decoder (decision tree scheme) the best chance of decoding the message (class).
Hence we can immediately grasp the fundamental distortion-rate trade-off, more

bits meaning less distortion.

This trade-off is formalised in communication theory by the rate-distortion curve
for a given noisy channel which provides a fundamental lower bound on the

achievable distortion for a given rate. By modelling the induction problem in this

setting the rate becomes the average tree depth, ii, while the distortion is the
average probability of misclassification, Pe, in using the tree. Figure 3 shows a
typical distortion-rate curve. The horizontal asymptote represents the minimum

achievable misclassification rate, P min, for a given set of features and a given

, classification problem. In pattern recognition literature this is termed the Bayes' rate
and is a result of the inherent noise or overlap between the class-attribute
conditional probability densities. Hence the distortion-rate curve provides a lower
bound for what might be termed the 'operating point' of the tree classifier. A good

algorithm will induce classification rules which have lower distortion, Pe, as the rate,

ii, increases. We have shown in previous work that, for certain termination rules, Pe

is indeed bounded above by a function which decreases as ii increases (Goodman &

Smyth, 1988b).

We can also use the distortion-rate model to confirm and explain an earlier

conjecture by Quinlan (1986), namely that it is better to use noisy data than
'non-noisy' good data in the design phase, if the induced classification rules are to be
used on noisy data. Figure 4 shows clearly that this is true. Consider that we wish to
design a tree to achieve some specified Pe. Using 'non-noisy' data is like designing

,

possible 'operating' point/ for a tree classifier

Distortion
:Pe

.

Bayes risk -.. - - - - - - - - - - - - --

H(C) N

Rate:d

FIG. 3. General distortion-rate characteristic.
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actual
operating point

. ! designed Distortion operating point

=Pe

achievable operating
point If noIsy data. / were used in design

actual distortion-

rate bound
design distortion-rate .

bound

H(C) N

Rate = a

FIG. 4. How 'good' data can lead to the wrong result. .

the classifier with an artificially low distortion-rate bound; d is fixed at an artificially

low value of Pe. In using the tree Pe will be larger, perhaps much larger, than the

specified Pe. However if noisy data had been used, the designed value of Pe and the
true value would be the same, with perhaps only a slight increase in d.

Continuing the communications analogy we have also shown that the top-down

mutual information algorithm is equivalent in a certain sense to Shannon-Fano

prefix-coding (Fano, 1961). Choosing the attribute which yields the most informa-

tion is equivalent to choosing the attribute which most closely partitions the classes

into subsets of equal probability. The Shannon-Fano prefix-coding scheme is known

to be near-optimal compared to the optimal scheme by Huffman (1952) but has

computational advantages. This equivalence to prefix-coding is a very positive result

with respect to the mutual information induction heuristic. We have established

upper and lower bounds on d (in terms of the entropy of the class distribution H(C)
and the noise level) using the coding ideas. The tightness of the bounds obtained

(Goodman & Smyth, 1988b) are further proof that the algorithm is, on average,

near-optimal. For example with no noise, and with some constraints on the class

probability distribution, we get .

H(C) :5 d:5 1.09H(C)

The rate-distortion model and the prefix coding equivalence provided the basis for

some new results regarding termination rules. From Fig. 3 we see that the form of

the termination rule will critically influence the position of the 'operating point' of

the classifier.

We have also shown (Goodman & Smyth, 1988b) that the information gained at

any node is simply the entropy of the branch probabilities less a noise term. The size

of the noise term limits the available information. Prior work in this area had

indicated that threshold-type termination rules did not perform well in practice

(Breiman et al., 1984; Sethi & Sarvarayudu, 1982). In terms of our model it is clear
why this happens due to the basic phenomenon of limited information is the

presence of noise. Termination rules based on statistical tests such as the Chi-square

test (Quinlan, 1986) are an improvement but may not be sufficient due to limitations
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on the sample size, i.e., the rule is most critically needed at nodes deep in the
tree-but at such nodes the number of samples may be very small, precluding the

use of the Chi-square test. Consequently we have proposed a new termination rule

called the Delta-entropy rule which basically compares the normalised entropies of

the class distribution at a node-, with and without Pmax, and decides to terminate or
not based on whichever is larger. The rule has been found to work well in practice

and is robust in the presence of noise.
In summary for this section, the main findings of our earlier work has been:

(1) to confirm that the mutual information induction algorithms (such as ID3) are

indeed near optimal;
(2) provide quantitative bounds on the performance of such algorithms; and

. (3) gain a general understanding of such issues as termination rules and choice of

design data, and consequently develop a new robust termination procedure.
Having gained considerable theoretical insight into the performance of the mutual

information mechanism we turned our attention to a practical application. The

remainder of this paper reports on the results of our practical work.

4. A practical application: edge detection

4.1. MOllVATION AND BACKGROUND

Edge detection remains one of the fundamental issues in the field of computer

vision. For the purposes of this paper we will use the description 'local discontinuity
in image luminance' to define an edge. An image is sampled and stored as a finite

set of discrete grey values. It is not surprising then that most edge detection schemes
are essentially digital filters through which the image is passed or convolved. The
length of the filter is defined by the size or extent of the window operator used to
implement the filter. The filters tend to be non-causal and non-recursive, i.e. finite
impulse response. Despite the fact that the window sizes of typical edge-detector

filters are relatively small in comparison with the size of the image itself,

two-dimensional convolution is still an expensive operation in computational terms.
Recent advances in edge detection theory (Canny, 1983; Marr & Hildreth, 1980)

, have led to the derivation of filters which are optimal under certain criteria.
Unfortunately the window sizes of these filters are large enough so that for the
present they are not realisable for many applications such as real-time automated

inspection.
Instead the smaller window size operators such as the Sobel (Duda & Hart, 1973)

continue to be used in the applications environment (Waxman et al., 1985; Wahl,
1987). However even for small size windows (e.g. 3 x 3) the bottleneck remains that
two-dimensional convolution is computationally slow. There is considerable motiva-
tion then to investigate any techniques which can reduce the fundamental
computation requirements in edge detection (Nitzan, 1985).

4.2. OUTLINE OF nlE APPROACH

We introduce here a new approach (from a rule induction viewpoint) to edge

filtering with a resulting significant decrease in computation cost. Essentially we

formulate the edge detection problem as a classification problem where pixels are to
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be classified as either 'edge' or 'non-edge'. Because the mutual information

induction algorithm yields a rule hierarchy, it is ideally suited to the problem of

deriving faster operators.

After defining a general procedure for designing hierarchical edge operators we

proceed to derive such operators on particular training images and evaluate their

performance on these and other images. For comparison purposes we use two other

operators, namely, the afore-mentioned Sobel operator, and the dispersion operator

based on order statistics, recently introduced by Pitas & Venetsanopoulos (1986).

The reasons for choosing precisely these operators are explained later but it is

sufficient to note that of the local (3 x 3 window) edge detectors the Sobel is

adjudged to perform best (Abdou & Pratt, 1979) while the dispersion operator is in

principle the fastest. The next section gives a brief description of these operators. It .

is important to note that the 3 x 3 size window was chosen for convenience only and

the method outlined is perfectly general for any arbitrary window size.

.

4.3. mE SOBEL AND DISPERSION EDGE OPERATORS
For evaluation purposes we have chosen to use the Sobel operator and the less well
known dispersion operator to compare with the hierarchical approach. The pixel

notation is given in Fig. 5 and the two masks for the Sobel operator are defined in

Fig. 6.

The procedure is to obtain two edge-enhanced images by convolving these masks
with the original image-essentially one mask enhances vertically oriented edges

while the other enhances horizontally oriented edges. If we define EI(i, j) to be the

grey-scale value of the enhanced image at pixel (i, j) then,

EI1(i, j) = 1~1 (Xk - Xk+6) I

EI2(i, j) = 1~1 (X3k-2 -X3k)1

(where Xk is the grey-scale value of the kth pixel (Fig. 5), so that

EI(i, j) = EI1(i, j) + EI2(i, j).

A suitable threshold t is determined and a pixel is classified as an edge if .

EI(i, j) > t

otherwise it is classified as a non-edge.

1 2 3

4 5 6

7 8 9

FIG. 5. Pixel notation.
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1 2 1

0 0 0

-1 -2 -1

1 0 -1

2 0 -2

1 0 -1

FIG. 6. The vertical and horizontal Sobel edge masks.

The dispersion operator of Pitas & Venetsanopoulos (1986) has the advantage of
being in principle computationally faster than any other known 3 x 3 operator. It is

based on order statistics. To obtain the order statistics it is first necessary to sort the
N pixels in the window in order of increasing magnitude so that

X(l) s X(2) S , . . . , S x(N)

where N = 9 for a 3 x 3 window. The range of the random variables Xl' . . . , XN is

defined as

W(l) = x(N) - X(l)

Quasi-ranges are defined by

. W(i)=X(N+l-i)-X(i)' 2sis l~J

One can define the range and quasi-ranges as primitive operators; they give an
indication of the grey-scale variation within the local area of the pixel and hence
indicate the possible presence of an edge. However due to the absence of spatial
information they are susceptible to noise and in particular to impulse noise. The
dispersion operator was defined as an average over the quasi-ranges to combat the
effect of noise, i.e.

LN/2j

W= L Wi

i=l

The W value for each pixel (i, j) is thresholded to determine if or not it contains an

edge. It can be shown (Pitas & Venetsanopoulos, 1986) that this operator performs
almost as well as the Sobel operator over a variety of comparison measures and can

be implemented much faster.
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4.4. EDGE DETECI10N AS A CLASSIFICATION PROBLEM

The idea of pixel-based classification into 'edge' and 'non-edge' classes is easy to
visualise. As in any classification problem the classes are described in terms of

attributes. A classifier is designed by taking a sufficiently large sample of pixels in

order to estimate the conditional probabilities of the classes given the various
attributes, e.g., the probability that the class is 'edge' given that the ith attribute has

value j. From the set of training samples relating attributes and classes we infer

some general rules for classifying pixels based on their attribute description, using

the mutual information induction algorithm.

First however the problem of attribute selection must be addressed. Remember

that our ultimate goal is to reduce the computation cost in defining a local edgedetector. Consequently, in order to compete with for example the Sobel operator, ,-

whatever attributes we choose must be computationally simple to implement-the

term 'primitive' provides a convenient description. Window operators can be

considered as 'composite' binary attributes in the sense that they are composed of
combinations of primitive attributes. They are binary-valued because the pixels are
essentially classified as 'edge' or 'non-edge' according to whether the composite

attribute is greater than or less than a certain threshold. What might be the

appropriate primitive attributes? We claim that for edge detection the difference

operator is the most important type of primitive operator. The rationale for this
claim can be stated in many different ways but in simple terms the presence or

absence of an edge will lead to larger or smaller difference values-although the
converse may not be true due to the presence of noise. Primitive attributes can be

defined by supplying pairs of arguments to the difference operator. Consider the
standard 3 x 3 window as shown in Fig. 5 with associated notation. We could for

example define the following primitive attributes,

attribute 1 : = Xl - X9

attribute 2 : = X4 - X6 .

attribute 3 := max {Xi} - min {Xi},

i i

where the i ranges over the window as described in Fig 5 and Xi is the grey level at ,-

the ith pixel. It is easy to see that the Sobel operator can be defined in terms of
primitive attributes like the ones above. We use F; to represent the ith attribute and
the random variable /; to denote the value of F;. /; is a discrete random variable,
which for the difference-type operators we are discussing here, is restricted in range
to the maximum grey level of the image.

The problem of course is that there is an extremely large set of potential pairwise
attributes to choose from (e.g., we are not necessarily constrained to using pixels

within a 3 x 3 window)-which ones should be chosen? As in any classification-type

problem attribute selection is almost an art form (however one of the advantages of

the mutual information algorithm is to delete irrelevant attributes from considera-

tion, making the attribute selection process easier). For the purposes of this paper
we have restricted our attributes to be the primitive operators which make up the

Sobel and dispersion operators-this facilitates comparison on both a performance
and computational level. It is important to realise however, that throughout the rest
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of the discussion, a primitive attribute can be thought of as any primitive pairwise

operator defined on pixels. We note again that the composite operators or attributes
are essentially binary-valued, i.e., greater than or less than some threshold. In

computation terms this amounts to a simple comparison. Hence we must also

implement the primitive attributes in this manner (i.e. with thresholds) if we wish

the hierarchical operator to be competitive in computational terms. The old problem

of threshold selection once again rears its ugly head. There are a variety of schemes
(e.g. Abdou & Pratt, 1979), for calculating threshold parameters for edge detectors

subject to some optimisation criterion. However we cannot strictly apply any of

those techniques for hierarchical edge detection, the reasoning being as follows.
Consider the conditional probability of the class 'edge' being present given that
some binary primitive attribute, Ft, is greater than some threshold, i.e. p(edge I/;>

f), where /; is the random variable denoting the value of the attribute Ft, and t is the
threshold. Since the pixels are correlated it is obvious that the various class and
attribute probabilities are not independent, i.e. if attribute x has some value then

the probability that 'there is an edge given attribute y greater than some other value'

must be conditioned on attribute x.
So for example the Bayesian minimum error threshold topt is chosen to minimise

the quantity

p(error) = p(edge, /;:5 t) + p(non edge, /; > t)

= p(edge I/; :5t) xp(/; :5t) + p(non edge I/; > t) xp(/; > t)

In a hierarchical classifier the above probabilities must be conditioned on all the
previously evaluated attributes and so topt depends on these attributes. Hence one
must calculate all the possible N(N -1) optimal thresholds before designing the

classifier (N is the number of attributes). This is not practical given the inherent

difficulties in estimating the probabilities in the equation for p(error).
Instead we propose an approach which circumvents the problem by using the tree

derivation algorithm. As we have seen the algorithm works by choosing the best

attribute (in an information-theoretic sense) conditioned on whatever attributes
have already been chosen. At any given node in the tree the best threshold is found

, for each attribute. This is achieved by use of the Kolmogorov-Smimov test, which
has certain desirable properties for this problem (Friedman, 1977; Smyth, 1988).

Given the thresholds, the attribute which then yields the most information about the

class variable is selected at that node.
Having defined the appropriate attributes, the next step is to obtain a set of

labelled or classified samples, i.e., training samples. Define a 'typical image' to be

one that contains typical edge content, luminance and noise of those images to be
encountered in practice. If the variation in application images is significant then

from a practical point of view it may be necessary to combine segments of different

images in order to synthesise a training image; since the individual samples are

pixels then it is quite easy to obtain a large sample so that the only constraints imposed
may be by the computing facilities available to run the classifier design algorithm,

e.g., memory constraints. The typical image is then classified via standard edge-

detection techniques using the best edge-detection algorithm available and the table
of training samples is obtained. Each datum corresponds to a pixel described by the
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chosen primitive attributes evaluated at that pixel and tagged with an 'edge' or

'non-edge' label.

4.5. POTENTIAL ADVANTAGES OF THIS APPROACH
We can now begin to appreciate the potential advantages of the hierarchical

operator. If for example the typical image contains .low edge content, as may be the
case with many images, then the optimal hierarchical operator should first try to

classify each pixel as 'non-edge' using some primitive attribute if possible and for

those pixels which are not immediately so classified apply other attributes to

determine if an edge is present. Since, in machine-vision problems for example,
many images have at least 90% of their pixels as 'non-edge,' the computational

advantages are obvious. "
For the hierarchical operator to be used for comparison purposes we chose to

define the primitive attributes as the range and the quasi-ranges of the order

statistics model, and the corner differences and main axes differences of the Sobeloperator as defined in Fig. 7. The rationale for choosing the latter four attributes (as '

defined in Fig. 7) was to include some primitive attributes which had spatial

dependence and could indicate edges in various orientations. The attributes chosen
may not be the set of optimal primitive attributes but rather are a set of easily

computable operations which are easy to interpret. However it is important to
remember that any redundant attributes which might be chosen, or equivalently
attributes which yield no relevant information, will by definition be suppressed by

the tree derivation algorithm. The goal here is not necessarily to derive optimal

hierarchical operators but rather to demonstrate the feasibility of hierarchical
operator design and investigate the resulting performance.

iih
~nI

Vi1~b .,.

ii7,jj)

,

x1 -Xg X3 -X7

X2-XS X4-XS

FIG. 7. Spatial primitive features.
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Now consider the relative computational performance of the three operators. The
results are tabulated in Table 1. Since the hierarchical operators for both images

were very similar, the Figures in the hierarchical column are an average over both.

The conditional evaluations are tests of the form 'is x > y?' and do not include the

computation of x if x is a compound expression-such computations are included

under 'additions.' We have used the minimum delay of eight comparisons for a

parallel sorting structure (Knuth, 1973). For sorting in serial form the number in the

dispersion column corresponds to the minimum number of comparisons required to

sort nine numbers (Knuth, 1973). Because we do not need to sort all the numbers
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FIG, 9. Edge maps for 'bin of tools' image,

each time the hierarchical operator is used, the figures in the hierarchical column are
the experimentally obtained average number of comparisons required.

Any comparison in this manner is obviously dependent on the method of

implementation, e.g. hardware or software, serial or parallel, relative speed of the

various primitive operations. Nevertheless, independent of implementation, the

hierarchical operator will always be considerably faster than the dispersion operator
particularly for images of low edge content, which is the usual case. Comparing the

Sobel and hierarchical operators will depend on the implementation and especially

on the relative speed of comparisons and additions. If one assumes (as in, Pitas &
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FIG. 10. Hierarchical operator for airplane image.

Venetsanopoulos, 1986) that one were to implement the sorting operation using a

parallel VLSI sorting network then the hierarchical operator would indeed be much
faster. As a matter of interest, using programs written in C, to classify all pixels in a

256 by 256 size image took 30.8 s with the dispersion operator, 23.7 s with the Sobel,
and 16.4 s with the hierarchical. It was apparent that both the dispersion and ;-

hierarchical operators spent most of the time sorting the pixel values, so that one

might expect a parallel implementation to run very quickly indeed.

.,.

TABLE 1

Comparison of edge detectors in terms of computation

Sobel Dispersion Hierarchical

Additions 13 7 1.34

Multiplications 0 0 0

Absolute. value 2 0 0.46

operations

Conditio~al 1 1 1.34

evaluations

Sorting

comparisons;

Parallel 0 8 9

Serial 0 19 15.8
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6. Conclusion

The question we addressed in this paper was basically the following: given that

induction algorithms which use mutual information (such as ID3) are intuitively

appealing, can we then prove their utility both theoretically and practically? (The

answer to the latter part of the question has already been proven true to some

extent elsewhere-Michie, 1987; Riese, 1984; Wang & Suen, 1984; Sethi &

Sarvarayudu, 1982). The results we referred to in the earlier section of this paper

certainly provide a sound theoretical basis for the algorithm and justify its use. From

a practical viewpoint we have also met with success, i.e., the edge detection

experiment. It is important to realise the general implications we can draw from

.. these practical results.

(1) The algorithm yields efficient and accurate 'classifiers' or 'rule-hierarchies.'

(2) Attribute selection is an important aspect of experiment design. Indeed it is

about the only part of the design procedure which may require domain dependent

expert knowledge. However because the mutual information approach ignores

irrelevant attributes, then one can over-specify the number of attributes. Hence, as

in this problem, image-processing 'novices' such as ourselves can achieve relatively

'expert' results, i.e., see Figs. 8 and 9.

(3) We noted that in all the hierarchical operators derived by the algorithm (for

the two examples given and several other images not shown in this paper), the

attribute W(2) was always at the root node, i.e., W(2) was the most informative

attribute for every image we used. In addition the spatial attributes rarely appeared

in any of the operators. Hence the conjecture is that order statistics are more useful

for edge detection than spatial operators and for 3 x 3 windows W(2) is the single best
statistic. This is an example of new domain-dependent knowledge resulting from the

induction algorithm.

We conclude that the mutual information algorithm is well-founded and has

practical potential as an induction tool. The immediate goal in our research is to

- generalise the algorithm for applications in expert systems design. At present the
induced tree structure may not be flexible enough in itself for an expert system type

of environment. For instance if data is unavailable at run time the hierarchy should

. be such as to allow for this (White, 1985 also mentions this idea). The existing

algorithm can easily accommodate this in principle simply by deleting the appropri-

ate attribute data at each node as if it did not exist and so obtaining an extra 'don't

know' branch. However there are practical problems associated with this approach,
such as exponential order tree growth, which must be solved. More general

approaches such as induction algorithms which derive sets of rules or general graph

structures, based on information-theoretic measures, also appear promising (Good-

man & Smyth, 198&; Smyth, 1988).
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