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Analog VLSI Neural Network With
Digital Perturbative Learning

Vincent F. Koosh and Rodney M. Goodman

Abstract—Two feed-forward neural-network hardware implementa-
tions are presented. The first uses analog synapses and neurons with a
digital serial weight bus. The chip is trained in loop with the computer
performing control and weight updates. By training with the chip in
the loop, it is possible to learn around circuit offsets. The second neural
network also uses a computer for the global control operations, but all of
the local operations are performed on chip. The weights are implemented
digitally, and counters are used to adjust them. A parallel perturbative
weight update algorithm is used. The chip uses multiple, locally generated,
pseudorandom bit streams to perturb all of the weights in parallel. If the
perturbation causes the error function to decrease, the weight change
is kept; otherwise, it is discarded. Test results from a very large scale
integration (VLSI) prototype are shown of both networks successfully
learning digital functions such asAND and XOR.

Index Terms—Analog very large scale integration (VLSI), chip-in-loop
training algorithm, learning, neural chips, neural network, neuromorphic,
perturbation techniques, VLSI feed-forward neural network.

I. INTRODUCTION

Several circuits are presented for implementing neural-network
architectures. Neural networks have proven useful in areas requiring
man–machine interactions such as handwriting or speech recognition.
Although these neural networks can be implemented with digital
microprocessors, the large growth in portable devices with limited
battery life increases the need of finding custom low-power solutions.
Furthermore, the area of operation of the neural network circuits
can be modified from low power to high speed to meet the needs of

Manuscript received October 18, 2001; revised June 20, 2002. This paper was
recommended by Associate Editor G. Cauwenberghs.

The authors are with the California Institute of Technology, Pasadena, CA
91125 USA (e-mail: darkd@ieee.org; e-mail: rogo@caltech.edu).

Publisher Item Identifier 10.1109/TCSII.2002.802282.

the specific application. The inherent parallelism of neural networks
allows a compact high-speed solution in analog very large scale
integration (VLSI).

First, a VLSI feed-forward neural network is presented that makes
use of digital weights, analog synaptic multipliers and analog neurons.
The network is trained in a chip-in-loop fashion with a host computer
implementingthetrainingalgorithm.Thechipusesaserialdigitalweight
bus implemented by a long shift register to input the weights. The inputs
and outputs of the network are provided directly at pins on the chip.

Next, a VLSI neural network that uses a parallel perturbative weight
update technique is presented. The network uses the same synapses and
neurons as the previous network, but all of the local, parallel, weight up-
date computations are performed on chip. This includes the generation
of random perturbations and counters for updating the digital words
where the weights are stored.

The training algorithm used in both networks is a parallel weight per-
turbation method. For both implementations, training results are shown
for a two-input, one-output network trained with anAND function, and
for a two-input, two-hidden layer, one-output network trained with an
XOR function.

II. VLSI N EURAL NETWORK WITH ANALOG MULTIPLIERS AND A

SERIAL DIGITAL WEIGHT BUS

Training an analog neural network directly on a VLSI chip provides
additional benefits over using a computer for the initial training and
then downloading the weights. The analog hardware is prone to have
offsets and device mismatches. By training with the chip in the loop,
the neural network will also learn these offsets and adjust the weights
appropriately to account for them. A VLSI neural network can be ap-
plied in many situations requiring fast, low-power operation such as
handwriting recognition for portable devices or pattern detection for
implantable medical devices [2].

Thereareseveral issuesthatmustbeaddressedto implementananalog
VLSI neural network chip. First, an appropriate algorithm suitable for
VLSI implementation must be found. Traditional error backpropaga-
tion approaches for neural network training require too many bits of
floating-pointprecision to implementefficiently inananalogVLSIchip.
Techniques thataremoresuitable involvestochasticweightperturbation
[1], [3]–[7], where a weight is perturbed in a random direction, its effect
on the error is determined, and the perturbation is kept if the error was
reduced; otherwise, the old weight is restored. In this approach, the net-
work observes the gradient rather than actually computing it.

Serial weight perturbation [3] involves perturbing each weight se-
quentially. This requires a number of iterations that is directly propor-
tional to the number of weights. A significant speed-up can be obtained
if all weights are perturbed randomly in parallel and then measuring
the effect on the error and keeping them all if the error reduces. Both
the parallel and serial methods can potentially benefit from the use of
annealing the perturbation. Initially, large perturbations are applied to
move the weights quickly toward a minimum. Then, the perturbation
sizes are gradually decreased to achieve finer selection of the weights
and a smaller error. In general, however, optimized gradient-descent
techniques converge more rapidly than the perturbative techniques.

Next, the issue of how to appropriately store the weights on chip
in a nonvolatile manner must be addressed. If the weights are simply
stored as charge on a capacitor, they will ultimately decay due to para-
sitic conductance paths. One option would be to use an analog memory
cell [8], [9]. This would allow directly storing the analog voltage value.
However, this technique requires introducing large voltages to obtain
tunneling and/or injection through the gate oxide and is still being in-
vestigated. Another approach would be to use traditional digital storage
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Fig. 1. Binary weighted current source circuit.

with EEPROMs. This would then require having one analog-to-digital
(A/D) converter and one digital-to-analog (D/A) converter (A/D/A con-
verters) for the weights. A single A/D/A converter would only allow
a serial weight perturbation scheme that would be slow. A parallel
scheme, which would perturb all weights at once, would require one
A/D/A per weight. This would be faster, but would require more area.
One alternative would remove the A/D requirement by replacing it with
a digital counter to adjust the weight values. This would then require
one digital counter and one D/A per weight.

A. Synapse

A small synapse with one D/A per weight can be achieved by first
making a binary weighted current source (Fig. 1) and then feeding
the binary weighted currents into diode connected transistors to en-
code them as voltages. These voltages are then fed to transistors on the
synapse to convert them back to currents. Thus, many D/A converters
are achieved with only one binary weighted array of transistors. It is
clear that the linearity of the D/A will be poor because of matching
errors between the current source array and synapses which may be lo-
cated on opposite sides of the chip. This is not a concern because the
network will be able to learn around these offsets.

The synapse [2], [6] is shown in Fig. 2. The synapse performs the
weighting of the inputs by multiplying the input voltages by a weight
stored in a digital word denoted by b0–b5. The sign bit, b5, changes
the direction of current to achieve the appropriate sign.

In the subthreshold region of operation, the transistor equation is
given by [10]Id = Id0 exp(�Vgs=Ut) and the output of the synapse
is given by [2], [10]

�Iout = Iout+ � Iout� =WI0 tanh
�(Vin+ � Vin�)

2Ut

whereW is the weight of the synapse encoded by the digital word and
I0 is the least significant bit (LSB) current. Thus, in the subthreshold
linear region, the output is approximately given by

�Iout � gm�Vin =
�I0
2Ut

W�Vin:

In the above threshold regime, the transistor equation in saturation
is approximately given byID � K(Vgs�Vt)

2. The synapse output is
no longer described by a simple tanh function, but is nevertheless still
sigmoidal with a wider “linear” range. In the above threshold linear
region, the output is approximately given by

�Iout � gm�Vin = 2
p
KI0

p
W�Vin:

It is clear that above threshold, the synapse is not doing a pure
weighting of the input voltage. However, since the weights are learned
on chip, they will be adjusted accordingly to the necessary value.
Furthermore, it is possible that some synapses will operate below
threshold while others above, depending on the choice of LSB current.
Again, on-chip learning will be able to set the weights to account for
these different modes of operation.

Fig. 2. Synapse circuit.

Fig. 3. Synapse differential output current as a function of differential input
voltage for various digital weight settings.

Fig. 3 shows the differential output current of the synapse as a func-
tion of differential input voltage for various digital weight settings. The
input current of the binary weighted current source was set to 100 nA.
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Fig. 4. Neuron circuit.

The output currents range from the subthreshold region for the smaller
weights to the above threshold region for the large weights. All of the
curves show their sigmoidal characteristics. Furthermore, it is clear that
the width of the linear region increases as the current moves from sub-
threshold to above threshold. For the smaller weights,W = 4, the
linear region spans only approximately 0.2 V–0.4 V. For the largest
weights,W = 31, the linear range has expanded to roughly 0.6 V–0.8
V. As was discussed previously, when the current range moves above
threshold, the synapse does not perform a pure linear weighting. The
largest synapse output current is not 3.1�A as would be expected from
a linear weighting of 31� 100 nA, but a smaller number. Notice that
the zero crossing of�Iout occurs slightly positive of�Vin = 0. This
is a circuit offset that is primarily due to slight W/L differences of the
differential input pair of the synapse, and it is caused by minor fabri-
cation variations.

B. Neuron

The synapse circuit outputs a differential current that will be summed
in the neuron circuit shown in Fig. 4. The neuron circuit performs the
summation from all of the input synapses. The neuron circuit then
converts the currents back into a differential voltage feeding into the
next layer of synapses. Since the outputs of the synapse will all have
a common mode component, it is important for the neuron to have
common mode cancelation [2]. Since one side of the differential current
inputs may have a larger share of the common mode current, it is impor-
tant to distribute this common mode to keep both differential currents
within a reasonable operating range. If�I = Iin+ � Iin� = Iin+ �
Iin� andIcm = (Iin+ + Iin�)=2 = (Iin+ + Iin� + 2Icm )=2 =
2Icm , then the neuron circuit ensures thatIin+ = Iin+ � Icm=2 =
�I=2 + Icm=2 andIin� = Iin� � Icm=2 = ��I=2 + Icm=2.

If the�I is of equal size or larger thanIcm, the transistor withIin�
may begin to cutoff and the previous equations would not exactly hold;

however, the current cutoff is graceful and should not normally affect
performance. With the common mode signal properly equalized, the
differential currents are then mirrored into the current-to-voltage trans-
formation stage. This stage effectively takes the differential input cur-
rents and uses a transistor in the triode region to provide a differen-
tial output. This stage will usually be operating above threshold, be-
cause theVo�set andVcm controls are used to ensure that the output
voltages are approximately mid-rail. This is done by simply adding
additional current to the diode connected transistor stack. Having the
outputs mid-rail is important for proper biasing of the next stage of
synapses. The above threshold transistor equation in the triode region
is given byId = 2K(Vgs � Vt � Vds=2)Vds � 2K(Vgs� Vt)Vds for
small enoughVds, whereK = �CoxW=L. If K1 denotes the prefactor
of the cascode transistor andK2 denotes the same for the transistor with
gateVout, the voltage output of the neuron will then be given by

Vout =
Iin

2K2(Vgain � Vt)� 2
K

K
Iin

+ Vt

which forK1 = K2 converts to

Vout =
Iin

2K(Vgain � Vt)� 2
p
KIin

+ Vt:

For small input currentIin, the effective resistance is

R � 1

2K(Vgain � Vt)
:

Thus, it is clear thatVgain can be used to adjust the effective gain of the
stage.

Fig. 5 shows how the neuron differential output voltage�Vout varies
as a function of differential input current for several values ofVgain.
The neuron shows fairly linear performance with a sharp bend on either
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Fig. 5. Neuron differential output voltage,�V , as a function of�I , for
various values ofV .

Fig. 6. Neuron positive output,V , as a function of�I , for various
values ofV .

side of the linear region. This sharp bend occurs when one of the two
linearized, diode connected transistors with gate attached toVout turns
OFF.

Fig. 6 displays only the positive outputVout+ of the neuron. The
diode connected transistor, with gate attached toVout+ turnsOFFwhere
the output goes flat on the left side of the curves. This corresponds to
the left bend point in Fig. 5. The baseline output voltage corresponds
roughly toVo�set, however, asVo�set increases in value, its ability to in-
crease the baseline voltage is reduced because of the cascode transistor
on its drain. At some point, especially for small values ofVgain, theVcm
transistor becomes necessary to provide additional offset. Overall, the
neuron shows very good linear current-to-voltage conversion with sep-
arate gain and offset controls.

C. Feed-forward Network

Using the synapse and neuron circuit building blocks, it is possible
to construct a multilayer feed-forward neural network. A serial weight
bus is used to apply weights to the synapses. The weight bus merely

Fig. 7. Parallel perturbative algorithm.

consists of a long shift register to cover all of the possible weight and
threshold bits. The input to the serial weight bus comes from a host
computer which implements the learning algorithm.

Note that the nonlinear squashing function is actually performed in
the next layer of synapse circuits rather than in the neuron as in a tra-
ditional neural network. This is equivalent as long as the inputs to the
first layer are kept within the linear range of the synapses. However,
equivalence is unnecessary as long as the chip is trained in the loop.
Also, for digital functions, the inputs need not be constrained as the
synapses will pass roughly the same current regardless of whether the
digital inputs are at the flat part of the synapse curve near the linear
region or all the way at the end of the flat part of the curve. Further-
more, for nondifferential digital signals, it is possible to simply tie the
negative input to mid-rail and apply the standard digital signal to the
positive synapse input. The biases, or thresholds, for each neuron are
simply implemented as synapses tied to fixed bias voltages. The biases
are learned in the same way as the weights.

Also, depending on the type of network outputs desired, additional
circuitry may be needed for the final squashing function. For example,
if a roughly linear output is desired, the differential output can be taken
directly from the neuron outputs. In the current implementation, a dif-
ferential to single ended converter is placed on the output neuron. The
gain of this converter determines the size of the linear region for the
final output. Normally, during training, a somewhat linear output with
low gain is desired to have a reasonable slope to learn the function on.
However, after training, it is possible to take the output after a dual
inverter digital buffer to get a strong standard digital signal to send
off-chip or to other sections of the chip.

D. Training Algorithm

The neural network is trained by using a parallel perturbative weight
update rule [1]. The perturbative technique requires generating random
weight increments to adjust the weights during each iteration. These
random perturbations are then applied to all of the weights in parallel.
In batch mode, all input training patterns are applied and the error is
accumulated. This error is then checked to see if it was higher or lower
than the unperturbed iteration. If the error is lower, the perturbations
are kept, otherwise they are discarded. This process repeats until a suf-
ficiently low error is achieved. An outline of the algorithm is given in
Fig. 7. Since the weight updates are calculated offline, other suitable
algorithms may also be used. For example, it is possible to apply an an-
nealing schedule wherein large perturbations are initially applied and
gradually reduced as the network settles.

E. Test Results

A chip implementing the above circuits was fabricated in a
1.2-�m CMOS process [11]. All synapse and neuron transistors were
3.6�m/3.6�m to keep the layout small. The unit size current source
transistors were also 3.6�m/3.6�m. An LSB current of 100 nA was
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Fig. 8. Training of a 2 : 1 network withAND function.

Fig. 9. Training of a 2 : 2 : 1 network withXOR function starting with small random weights.

chosen for the current source. The above neural network circuits were
trained with some simple digital functions such as two-inputAND

and two-inputXOR. The results of some training runs are shown in
Figs. 8 and 9. As can be seen from the figures, the network weights
slowly converge to a correct solution. Since the training was done on
digital functions, a differential to single-ended converter was placed
on the output of the final neuron. This was simply a five-transistor
transconductance amplifier. The error voltages were calculated as
a total sum voltage error over all input patterns at the output of the
transconductance amplifier. SinceVdd was 5 V, the output would only
easily move to within about 0.5 V fromVdd because the transcon-
ductance amplifier had low gain. Thus, when the error gets to around
2 V, it means that all of the outputs are within about 0.5 V from their

respective rail and functionally correct. A double inverter buffer can
be placed at the final output to obtain good digital signals. At the
beginning of each of the training runs, the error voltage starts around
or over 10 V indicating that at least two of the input patterns give an
incorrect output.

Fig. 8 shows the results from a two-input, one-output network
learning anAND function. This network has only two synapses and
one bias for a total of three weights. The weight values can go from
�31 to+31 because of the 6 b D/A converters used on the synapses.

Fig. 9 shows the results of training a two-input, two-hidden unit,
one-output network with theXOR function. The weights are initial-
ized as small random numbers. The weights slowly diverge and the
error monotonically decreases until the function is learned. As with
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Fig. 10. Network with “ideal” weights chosen for implementingXOR.

gradient techniques, occasional training runs resulted in the network
getting stuck in a local minimum.

An ideal neural network with weights appropriately chosen to imple-
ment theXOR function is shown in Fig. 10. The inputs for the network
and neuron outputs are chosen to be (�1, +1), as opposed to (0,1).
This choice is made because the actual synapses which implement the
squashing function give maximum outputs of+/�Iout. The neurons
are assumed to be hard thresholds. The function computed by each of
the neurons is given byOut = sgn((

i
WiXi) + t). The weights

were chosen to be within the range of possible weight values,�31 to
+31, of the actual network. This ideal network would perform perfectly
well with smaller weights. For example, all of the input weights could
be set to 1 as opposed to 20, and the A and B thresholds would then
be set to 1 and�1, respectively, without any change in the network
function. However, weights of large absolute value within the possible
range were chosen (20 as opposed to 1), because small weights would
be within the linear region of the synapses. Also, small weights such as
+/�1 might tend to get flipped due to circuit offsets. A SPICE simu-
lation was done on the actual circuit using these ideal weights and the
outputs were seen to be the correctXOR outputs.

Fig. 11 shows the 2 : 2 : 1 network trained withXOR, but with the
initial weights chosen as the mathematically correct weights for the
ideal synapses and neurons. Although the ideal weights should, both
in theory and based on simulations, start off with correct outputs, the
offsets and mismatches of the circuit cause the outputs to be incorrect.
However, since the weights start near where they should be, the error
goes down rapidly to the correct solution. This is an example of how a
more complicated network could be trained on computer first to obtain
good initial weights and then the training could be completed with the
chip in the loop. Also, for more complicated networks, using a more
sophisticated model of the synapses and neurons that more closely ap-
proximates the actual circuit implementation would be advantageous
for computer pretraining.

III. PARALLEL PERTURBATIVE VLSI NEURAL NETWORK

A fully parallel perturbative algorithm cannot truly be realized with a
serial weight bus, because the act of changing the weights is performed
by a serial operation. Thus, it is desirable to add circuitry to allow for
parallel weight updates.

First, a method for applying random perturbation is necessary. The
randomness is necessary because it defines the direction of search for

finding the gradient. Since the gradient is not actually calculated, but
observed, it is necessary to search for the downward gradient. It is pos-
sible to use a technique which does a nonrandom search. However,
since no prior information about the error surface is known, in the
worst case a nonrandom technique would spend much more time in-
vestigating upward gradients which the network would not follow.

A conceptually simple technique for generating random perturba-
tions would be to amplify the thermal noise of a diode or resistor. Un-
fortunately, the extremely large value of gain required for the amplifier
makes the amplifier susceptible to crosstalk. Any noise generated from
neighboring circuits would also get amplified. Since some of this noise
may come from clocked digital sections, the noise would become very
regular, and would likely lead to oscillations rather than the uncorre-
lated noise sources that are desired.

Such a scheme was attempted with separate thermal noise generators
for each neuron [14]. The gain required for the amplifier was nearly
one million and highly correlated oscillations of a few megahertz were
observed among all the noise generators. Therefore, another technique
is required.

Instead, the random weight increments can be generated digitally
with linear feedback shift registers that produce a long pseudorandom
sequence. These random bits are used as inputs to a counter that stores
and updates the weights. The counter outputs go directly to the D/A
converter inputs of the synapses. If the weight updates lead to a re-
duction in error, the update is kept. Otherwise, an inverter block is acti-
vated which inverts the counter inputs coming from the linear feedback
shift registers. This has the effect of restoring the original weights. A
block diagram of the full neural network circuit function is provided in
Fig. 12.

A. Multiple Pseudorandom Bit Stream Circuit

Linear feedback shift registers are a useful technique for generating
pseudorandom noise [12], [13]. However, a parallel perturbative
neural network requires as many uncorrelated noise sources as there
are weights. Unfortunately, an LFSR only provides one such noise
source. It is not possible to use the different taps of a single LFSR
as separate noise sources because these taps are merely the same
noise pattern offset in time and thus highly correlated. One solution
would be to use one LFSR with different feedback taps and/or initial
states for every noise source required. For large networks with long
training times, this approach becomes prohibitively expensive in
terms of area and possibly power required to implement the scheme.
Another approach [15] builds from a standard LFSR with the addition
of anXOR network with inputs coming from the taps of an LFSR and
with outputs providing the multiple noise sources. Other approaches
involving cellular automata can also be found [16], [17].

Another simplified approach utilizes two counterpropagating LFSRs
with an XOR network to combine outputs from different taps to ob-
tain uncorrelated noise [18]. Since the two LFSRs are counterpropa-
gating, the length of the output sequences obtained from theXOR net-
work is equal to the product of the lengths of the two individual LFSR
sequences. It is possible to obtain more channels and larger sequence
lengths with the use of larger LFSRs. This was the scheme that was
ultimately implemented in hardware.

B. Up/Down Counter Weight Storage Elements

The weights in the network are represented directly as the bits of an
up/down digital counter. The output bits of the counter feed directly
into the digital input word weight bits of the synapse circuit. Updating
the weights becomes a simple matter of incrementing or decrementing
the counter to the desired value.
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Fig. 11. Training of a 2 : 2 : 1 network withXOR function starting with “ideal” weights.

Fig. 12. Block diagram of parallel perturbative neural network circuit.

C. Parallel Perturbative Feed-forward Network

Fig. 12 shows a block diagram of the parallel perturbative neural
network circuit operation. The synapse, binary weighted encoder and
neuron circuits are the same as those used for the serial weight bus
neural network. However, instead of the synapses interfacing with a

Fig. 13. Pseudocode for parallel perturbative learning network.

serial weight bus, counters with their respective registers are used to
store and update the weights.

The counter up/down inputs originate in the pseudorandom bit gen-
erator and pass through an inverter block. The inverter block is essen-
tially composed of pass gates and inverters. If the invert signal is low,
the bit passes unchanged. If the invert bit is high, then the inversion of
the pseudorandom bit gets passed. Control of the inverter block is what
allows weight updates to either be kept or discarded.

D. Training Algorithm

The algorithm implemented by the network is a parallel perturbative
method [1], [5]. The basic idea of the algorithm is to perform a mod-
ified gradient descent search of the error surface without calculating
derivatives or using explicit knowledge of the functional form of the
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Fig. 14. Training of a 2 : 1 network with theAND function.

neurons. This is done by applying a set of small perturbations on the
weights and measuring the effect on the network error. First, the net-
work error,E(~w), is measured with the current weight vector,~w. Next,
a perturbation vector,���!pert , of fixed magnitude, but random sign is
applied to the weight vector yielding a new weight vector,~w+���!pert .
Afterwards, the effect on the error,�E = E(~w+���!pert )�E(~w), is
measured. If the error decreases then the perturbations are kept and the
next iteration is performed. If the error increases, the original weight
vector is restored. Thus, the weight update rule is of the following form:

~wt+1 =
~wt +

����!
pert ; if E ~wt +

����!
pert < E (~wt)

~wt; if E ~wt +
����!
pert > E (~wt)

:

The use of this rule may require more iterations compared to some
other perturbative weight update rules since it does not perform an ac-
tual weight change every iteration and since the weight updates are
not scaled with the resulting changes in error. Nevertheless, it signif-
icantly simplifies the weight update circuitry. Some means must still
be available to apply the weight perturbations; however, this rule does
not require additional circuitry to change the weight values proportion-
ately with the error difference, and, instead, relies on the same circuitry
for the weight update as for applying the random perturbations. Some
extra circuitry is required to remove the perturbations when the error

does not decrease, but this merely involves inverting the signs of all of
the perturbations and reapplying in order to cancel out the initial pertur-
bation. A pseudocode version of the algorithm is presented in Fig. 13.

E. Error Comparison

The error comparison section is responsible for calculating the error
of the current iteration and interfacing with a control section to im-
plement the algorithm. Both sections could be performed off-chip by
using a computer for chip-in-loop training, as was chosen for the cur-
rent implementation. This allows flexibility in performing the global
functions necessary for implementing the training algorithm, while the
local functions are performed on chip. However, the control section
could be implemented on chip as a standard digital section such as a fi-
nite state machine. Also, there are several alternatives for implementing
the error comparison on chip. First, the error comparison could simply
consist of A/D converters which would then pass the digital informa-
tion to the control block. Another approach would be to have the error
comparison section compare the analog errors directly and then output
digital control signals.

F. Test Results

A chip implementing the parallel perturbative neural network was
fabricated in the same technology and with similar transistor sizing as
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Fig. 15. Training of a 2 : 2 : 1 network with theXOR function.

for the previous test chip [19]. The results of some training runs are
shown in Figs. 14 and 15. As can be seen from the figures, the network
weights slowly converge to a correct solution. The error voltages were
taken directly from the voltage output of the output neuron. The error
voltages were calculated as a total sum voltage error over all input pat-
terns. The actual output voltage error is arbitrary and depends on the
circuit parameters. What is important is that the error goes down. Also
shown is a digital error signal that shows the number of input patterns
where the network gives the incorrect answer for the output. The net-
work analog output voltage for each pattern is also displayed.

The actual weight values were not made accessible and, thus, are
not shown; however, another implementation might also add a serial
weight bus to read the weights and to set initial weight values. This
would also be useful when pretraining with a computer to initialize the
weights in a good location.

Fig. 14 shows the results from a two-input, one-output network
learning anAND function. This network has only two synapses and one
bias for a total of three weights. The network starts with two incorrect
outputs which is to be expected with initial random weights. Since
the AND function is a very simple function to learn, after relatively
few iterations, all of the outputs are digitally correct. However, the
network continues to train and moves the weight vector in order to
better match the training outputs.

Fig. 15 shows the results of training a two-input, two-hidden unit,
one-output network with theXOR function. Although the error voltage
is monotonically decreasing, the digital error occasionally increases.
This is because the network weights occasionally transition through
a region of reduced analog output error that is used for training, but
which actually increases the digital error. This seems to be occasionally
necessary for the network to ultimately reach a reduced digital error.
The function is essentially learned after only several hundred iterations.

Some of the analog output values occasionally show a large jump
from one iteration to another. This occurs when a weight value which
is at maximum magnitude overflows and resets to zero. The weights are
merely stored in counters, and no special circuitry was added to deal
with these overflow conditions. It would require a simple logic block to
ensure that if a weight is at maximum magnitude and was incremented,
that it would not overflow and reset to zero. However, this circuitry
would need to be added to every weight counter and would be an un-
necessary increase in size. These overflow conditions should normally
not be a problem. Since the algorithm only accepts weight changes that
decrease the error, if an overflow and reset on a weight is undesirable,
the weight reset will simply be discarded. In fact, the weight reset may
occasionally be useful for breaking out of local minima, where a weight
value has been pushed up against an edge which leads to a local minima,
but a sign flip or significant weight reduction is necessary to reach the
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global minimum. In this type of situation, the network will be unwilling
to increase the error as necessary to obtain the global minimum.

IV. CONCLUSION

Several VLSI implementations of a neural network have been
demonstrated. Digital weights are used to provide stable weight
storage. Analog multipliers are used because full digital multipliers
would occupy considerable space for large networks. Although
the functions learned were digital, the networks are able to accept
analog inputs and provide analog outputs for learning other functions.
A parallel perturbation technique was used to train the networks
successfully on the 2-inputAND andXOR functions.

The size of the neuron cell in dimensionless units was 300�� 96�,
the synapse was 80� � 150�, and the weight counter/register was
340� � 380�. In the 1.2-�m process used to make the test chips,�

was equal to 0.6�m. In a modern process, such as a 0.35-�m process,
it would be possible to make a network with over 100 neurons and
over 10 000 weights in a 1 cm� 1 cm chip.

Thus, the ability to learn of a neural network which uses analog com-
ponents for implementation of the synapses and neurons and with 6 b
digital weights has been successfully demonstrated. The choice of 6 b
for the digital weights was made in order to demonstrate that learning
was possible with limited bit precision. The circuits can easily be ex-
tended to use 8 b weights. Using more than 8 b may not be desirable
since the analog circuitry itself may not have significant precision to
take advantage of the extra bits per weight. Significant strides can be
taken to improve the matching characteristics of the analog circuits, but
then the inherent benefits of using a compact, parallel, analog imple-
mentation may be lost.
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