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Distributed Odor Source Localization

Adam T. Hayes, Alcherio MartingliMember, IEEEand Rodney M. GoodmaiMember, IEEE

Abstract—This paper presents an investigation of odor localiza-  We design the agent control algorithms using principles
tion by groups of autonomous mobile robots. First, we describe a of swarm intelligence (Sl), a computational and behavioral
distributed algorithm by which groups of agents can solve the full metaphor for solving distributed problems that takes its inspi-

odor localization task. Next, we establish that conducting polymer- tion f biological | ided b al i t
based odor sensors possess the combination of speed and sensitivit lon from biological examples provided by social INSects.

necessary to enable real world odor plume tracing and we demon- [N most biological cases studied so far, robust and capable
strate that simple local position, odor, and flow information, tightly  group behavior has been found to be mediated by nothing more

coupled with robot behavior, is sufficient to allow arobot to localize  than a small set of simple interactions among individuals and

the source of an odor plume. Finally, we show that elementary com- patyeen individuals and the environment [7]. The application

munication among a group of agents can increase the efficiency of L . . .

the odor localization system performance. of SI principles to autopomous .cc'>lle.c.t|ve robotics aims to
develop robust task solving by minimizing the complexity of

the individual units and emphasizing parallelism, exploitation

of direct or indirect interactions, and distributedness. These

principles favor the design of behavior-based robotic systems,

similar at the individual level to those of Brooks [8] and Arkin

. INTRODUCTION [9], which emphasize tight coupling between sensation and

ECENT advances have been made in understanding agtion, avoidance of representational knowledge and action

ological odor localization and tracking as developed ilecomposition into contextually meaningful units [9]. The
moths [1], [2] and rats [3] in the air and lobsters [4] and stoninain advantages of the SI approach are three:. fi_r_st, scalabjlity
atopods [5] in water. Biology utilizes olfaction for a wide variety’om a few to .thousands of units; seconq, erX|b|I|t.y,.as units
of tasks including finding others of the same species, commufigh by dynamically added or removed without explicit reorga-
cation, behavior modification, avoiding predators and searchifgation; third, increased system robustness, not only through
for food. Animals use a combination of hardware (frequendjfit redundancy, but also through the design of minimalist
of receptor adaptation, perhaps), software (temporal integratidﬁ'l'ts- Several examples of collective robotics tasks solved with
and/or spatial integration) and behavioral search strategies (bathPrinciples can be found in the literature: aggregation [10]
intrinsic and landmark-based) to locate odor sources. Odor f1d segregation [11], beacon localization [12], stick pulling
calization is in essence a behavioral problem that varies from &hs], @nd collective transportation [14]. _
imal to animal. While some animals exploit fluid information at The aim of the case study described in this paper is four-fold.
different layers (lobster) or several residues on the ground (anfsyst. we describe a distributed algorithm by which groups of
others can track odors in the air (moths) or use a combination@€nts can solve the full odor localization task. Second, we
information (dogs). From an engineering standpoint, there #gtablish that conducting polymer-based odor sensors possess
advantages to combining odor tracking with mobile robots [6§€ combination of speed and sensitivity necessary to enable
such as in the detection of chemical leaks and the chemical mEg! world odor plume tracing. Third, we demonstrate via real
ping of hazardous waste sites. We are interested in developfRgOts and embodied simulations that simple sensory informa-
groups of small mobile robots that use odor tracking algorithnf9n tlghtly coupled with robot behavior is sufficient to allow an
multiple sensory modalities (e.g., odometry, anemometry, olfz@gent to find the source of an odor plume. Last, we show that

tion), and sensory fusion to search out and identify sourcesiBtegrating the information collected by a group of agents in an
odor. elementary manner can increase the efficiency of the odor lo-

calization system performance.

Index Terms—Chemical plume tracing, collective autonomous
robotics, distributed sensing, odor localization, olfaction, swarm
intelligence.
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with the added complication, due to the stochastic nature of

the plume, that a simple sequential search is not guaranteed to - 51-'.'5'.'"_'_ :

succeed. Plume traversing requires more specialized behavior, 5*-:;-'-2: "

both to progress in the direction of the source and to maintain o

consistent contact with the plume. Source declaration does not |' e oL,

necessarily have to be done using odor information, as typically r 7

odor sources can be sensed via other modalities from short S -']T'hu...']-- “T;..I_I z
range, but here we propose a solution using no extra sensory o ) o
apparatus. Fig. 1. Spiral Surge odor localization behavior.

As an odor source dissolves into a fluid medium, an odor

plume is formed. The turbulent nature of fluid flow typically | ) )
breaks the plume into isolated packets, areas of relative hiﬁrﬁ'f'c'al systems, however, the separation between algorithm

concentration surrounded by fluid that contains no odor [15{nd underlying hardware is much more clear and it no longer
The task of odor localization is thus one of plume traversal, §}2kes sense to constrain behavior strictly by sensory response
following the trail of odor packets upstream to the source. Th@aragtenstlcs. Therefore, in t_h|s work key_ aspectg of the search
becomes difficult as odor packets become more sparse (dug@gawor, such as surge duration and casting locality, are treated
source intermittency and diffusion below detectable levels) afg 2l901ithm parameters.
more dispersed (due to flow meander).

Previous odor localization research has utilized concentfa- The Spiral Surge Algorithm
tion gradient information to locate the centerline of a plume and The basic odor localization algorithm used in this study, spiral
then either anemotaxis [16], [17] or further chemotaxis [18] teurge (SS), is shown in Fig. 1. It consists of different behaviors
proceed to the source. These systems were restricted to opgiated to the three different subtasks.
ation in the proximal region of the plume (within 2 m of the Plume finding is performed by an initial outward spiral search
source) and had to move slowly (.01-.03 m/s) so that concgjattern (®IRALGAP1). This allows for thorough coverage of the
tration gradient information could be extracted with reasonahtscal space if the total search area is very large and initial infor-
accuracy using sensors with sub-Hz response or recovery tim@stion can be provided by the deployment point (an external
Although these efforts were successful in demonstrating the femst guess as to source location). Alternatively, ifanpriori
sibility of odor localization with mobile robots, it is not C|eal’know|edge is available, a spiral with a gap much greater than
that any method that involves spatial concentration extractigie arena size (producing essentially straight line search paths)
will extend to more sparse plumes (i.e., longer plume trackifgovides an effective, although not optimal [23], search proce-
distances), since , as odor information becomes less frequeiitie.
concentration integration times will increase, decreasing systenplume traversal is performed using a type of surge algorithm.
performance accordingly [19]. Moreover, these investigationghen an odor packet is encountered during spiraling, the robot
were limited by the speed of the sensors they incorporated.damples the wind direction and moves upwind for a set dis-
the distal plume region where plume information is intermittentance (SepSize). If during the surge another odor packet is en-
sensors that are too slow to register passing odor packets aredifntered, the robot resets the surge distance but does not re-
little use. sample the wind direction. After the surge distance has been
reached, the robot begins a spiral casting behavior, looking for
another plume hit. The casting spiral can be tighter than the

Although the approach of moving slowly and continuallyplume finding spiral (BIRALGAP2), as post surge the robot has
sampling odor and flow data to reduce environmental noiggformation about packet density and a thorough local search
is used in nature (starfish) and has been applied to robasca good strategy. If the robot subsequently re-encounters the
systems [17], [20], environmental and behavioral constraintume, it will repeat the surging behavior, but if there is no addi-
(e.g., significant plume sparseness or meander, time critit@nal plume information for a set amount of timeA€TIME),
performance) can render these systems ineffective. In thia¢ robot will declare the plume lost and return to the plume
case, upon sensing an odor signal, a good policy is to mdugding behavior (with a wider, less local, spiral gap parameter).
directly upwind, as a good immediate local indication of Source declaration can be accomplished using the fact that a
source direction under such circumstances is the instantaneamimot performing the plume traversal behavior at the head of a
direction of flow [21]. When the odor is no longer present, plume will tend to surge into an area where there is no plume
good strategy is to perform a local search (known as castingimfiormation and then spiral back to the origin of the surge be-
the biological literature) until it is reacquired, as the locatiofore receiving another odor hit. If the robot keeps track inter-
of the previous packet encounter provides the best immediatdly of the post spiral inter-hit distances (using odometry, for
estimate of where the next will occur. This type of surge-caskample, which is sufficient because information must be accu-
behavior has been observed in moths [22] and its performameage only locally), a series of small differences can indicate that
has been studied in simulation [2]. the robot has ceased progress up the plume and must therefore

The previous work on this odor localization algorithm wabe at the source. However, because small inter-hit distances can
aimed at studying biology, which limited the sensory and beccur in all parts of the plume, this method is not foolproof and
havioral time scales investigated. When applying these ideaduaing of the difference thresholdRS8DECTHRESH), as well as

B. Biological Inspiration
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TABLE | E. Odor Localization Performance
SPIRAL SURGE ALGORITHM PARAMETERS . . -
To study odor localization, we place groups of agents within a

SPIRALGAP1 Initial spiral gap width starting area inside an enclosed arena containing an odor plume.
SPIRALGAP2 | Plume reacquisition spiral gap width Over repeated trials, we measure the time and distance traveled
STEPSIZE Surge distance post odor hit by the whole group until the group completes the task, which can
CasTTIME | Length of time before reverting from be defined in a number of ways: an agent comes within a given
reacquisition to initial search spiral . ) =
SRODECTHRESH | Significance threshold between radius of the plume source (allocentric determination—useful
consecutive separate odor hits to emulate a nonodor related target sensor that each robot might
SrcDECCoOUNT |  Number of significant differences carry), an agent declares the plume source found (egocentric
before source declaration determination, no additional sensor necessary), or any combi-

nation and extension (i.e., multiple declarations required within

a given radius) thereof. In this paper, we examine both single
the number of observed occurrences before source declaratigiot allo- and egocentric stopping criteria, so for the purposes
(SRCDECCOUNT), is required to obtain a particular performancef performance, we simply assume that some measure of time
within a given plume. See Table | for a summary of individuadnd group energy (which can be considered proportional to the
SS parameters. sum of the individual distances traveled) necessary for task com-

SS uses only binary odor information generated from a singdéetion exist {r¢, Drc).

plume sensor because this is the most simple and reliable typgfficiency for the odor localization task cannot be defined in
of information that can be obtained from real hardware in thfe general case. Instead, we combine the two basic measures
temporal operating regime of interest. There may be informgf task performance in a task specific manner. Since these mea-
tion encoded in distal fine plume structure [24], however, dugires are physically independent, a composite metric incorpo-

to the highly stochastic nature of turbulent fluid flow and theating a particular weighting of these two basic factors can be
odor-packet nature of the plume, it is unclear that more complegnsidered.
sensing—via graded intensity information or larger fixed sensor

arrays—would benefit an odor localizing agent when flow infor- Q =aTrc + BDrc 1)
mation is available through other means. oIvrn + BDyin
P= 0 . (2)

D. Collaborative Spiral Surge _ . I . . .
Q is an arbitrary weighting of time and distance. By choosing

While more complex odor sensing may be beneficial to thepecific values fory and3, the appropriate relationship can be
odor localization task, another possible route to greater effienerated for evaluating any particular application. The form of
ciency is physical distribution of the odor sensing element®, ensures that for any and;3 greater than 0, the optimal system
which, in principle, could improve system speed and robustnessl achieve a performance of 1 and any that require more time
via parallelization of the search procedure. This can be achievaddistance will have a performance less than 1. We determine
by constructing an arbitrarily large and complex single robeie optimum values for the given taskg;n, Dasrn) from
or, perhaps more conveniently, distributing a number of sean agent executing the optimal behavior (a straight line path
sors throughout a group of smaller, more simple communicatif@m start to goal areas at maximum speed). Maximum speed,
robots. With a suitable command and control interface, this calhich determines the relationship between the time and distance
lective can be viewed as an odor localization sensor in much ¥aues, is determined by the maximum safe operating speed of
same way a single larger robot, or more generally device, coultle agent in the given environment. In this study, wesahd3
One way to increase the performance of such a robot swarnsésthat the time and energy components of the task factor equally
collaboration between individual nodes. In particular, if collatinto the minimum cost, se/3 = Dy v /Tavin-
oration is obtained with simple explicit communication schemes
such as binary signaling, the team performance can be enhanced IIl. M ATERIALS AND METHODS
without losing autonomy or significantly increasing complexity
at the individual level. A. Real Robots

Several simple types of communication can be integrated intoWe use Moorebots, as shown in Fig. 2, which were originally
basic SS. In this study, we examine the performance impactd&signed by Owen Holland at the University of West England,
three types of communication: no communicatioro{), a Bristol, U.K. Each 24 cm diameter robot is equipped with two
come here signal emitted by upwind surging robots that cau€e@@ motor-driven wheels, a castor wheel, a 2 Mbit wireless LAN
all robots downwind or with no plume information to surge irransceiver and 12-bit A/D and D/A converters. See [25] for a
the direction of the calling robot (&ARACT) and a stop signal more detailed robot description. We extended this basic con-
emitted by the first robot to receive odor information that causéguration with four infra-red range sensors for collision avoid-
all other robots to surge away from the signaling robot and thence, a single odor sensor and a hot wire anemometer. On-board
enter a power save mode from which they cannot be awakerggh-level control is provided by a PC104 based Intel 386 pro-
(KiLL). We investigate the influence of these types of commugessor running Linux. Low level control, such as motor speed
nication across group size to determine their impact on systeagulation, is executed by dedicated hardware interfaced to the
efficiency. PC104 bus.
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] i i g thty l TABLE I
o | , i Ty WIND FIELD CHARACTERIZATION
Distance from source [m)] 1 4 8

|"'_'rr"’f“§1

Mean wind speed [m/s] | 1.13 [ 1.01 | .34
Coefficient of variation [%] | 15.4 | 21.2 | 52.0
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Fig. 2. Moorebot equipped with wind, odor, and proximity sensors, as well as
markings for overhead tracking.

Rechangng Statons
B. Robot Arena and Infrastructure .- - ‘Hi_
The plume traversal arena is 6.7 by 6.7 m. The odor plume is

created by a 23 cm square hot water pan and a bank of five fans Fig. 3. Real robot arena as seen from overhead camera.
30 cm in diameter and it extends diagonally from one corner of

the arena toward the opposite corner. Flow characteristics based r F;#

on data taken along the plume axis 15 cm above the floor are /4 JN
summarized in Table 1. The coefficient of variation is a measure ./’.'/

of the intensity of the flow turbulence. It represents the ratio of

the standard deviation of the wind velocity to the mean wind
velocity and 20% is a value typically measured outdoors [16].
The robot start area is located in the corner opposite the plume
source. An overhead camera tracking system, combined with
a radio LAN among the robots and an external workstation, is
used to log position data during the trials, reposition the robots

My, o
",

between trials, and emulate the binary communication signals. ]

Trials of different group size are interleaved and inactive robots

are automatically positioned at recharging stations. The arena

layout, as seen from the overhead camera, is shown in Fig. 3. Fig. 4. Odor sensor close-up.

C. Odor Sensor The interface circuitry applies an input bias voltage across
While many types of odor sensing technology currently exiat multiplexer selectable range resistor to generate a current
[26], a good combination of ease of transduction, reversibilitthrough the sensor via a Wilson current source. The output
reproducibility, tunability, ease of production, robustness acrogsltage across the sensor is then filtered to remove high
environments, miniaturization, and speed is offered by carbdnequency noise and buffered for reading. The variable bias
doped polymer sensors [27]. This odor sensor detects the pnedtage and selectable range resistor allow a wide range of
ence of an airborne substance through a change in the electrégaisor baseline resistances (X0 o 10 M2) and automatic
resistance of a chemically sensitive carbon-doped polymer filtalibration, an important feature because polymer sensors are
[28]. While this type of sensor can lack baseline stability, it idifficult to fabricate precisely and their baselines drift over
very fast (response times.1 s [20]) and signal processing techtime. The calibration procedure consists of switching through
niques can be used to counteract its baseline drift. all range resistors with the bias voltage centered (and no
We fabricate sensors from solutions consisting of 20% carbstimulus present), choosing the resistor that results in an output
black and 80% polymer (poly-vinylpyrrolidone) dissolved irclosest to the desired output and then adjusting the bias voltage
dichlormethane, using methods as described in [29]. The camtil the desired baseline output is achieved. The resistor and
ducting polymer solution is spray coated [30] onto the surface bias values are then stored for later use. The desired output
a surface mount universal board so that the sensor film closesvthbie is 25% of the ADCs range, as the sensor values are more
circuit between two mounting pads. Polymer solution is applidikely to drift up than down.
until sensor resistance nears 100 kOhm and baseline resistanc&sevious versions of the interface circuit used a local analog
typically settle to a value between 30 and 300 kOhm after a fledback loop to maintain the output voltage at a constant level.
h drying period. A sensor close-up can be seen in Fig. 4.  However, this low-pass hardware filtering attenuated not only
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Fig. 5. Power spectral density of the odor sensor output when no stimulust . 6. Raw distal plume data, filtered distal plume data and filtered baseline
P . data. The threshold is 4 std above 0.
present and when the robot is in the distal end of plume.

the sensor drift but the signal as well, reducing sensor sens
tivity. Sensitivity is crucial for the study of plume tracing, be-
cause the agents must be able to sense a meaningful plume str &
ture, not simply respond when very close to the odor source. |
our indoor experimental set-up, room ventilation is limited, sc
enhancement of the plume signal is not an option. Thus, inste:
of using analog feedback, we digitally filter the output signal™
and record an odor hit whenever the filtered signal rises abov =
some threshold. We use a sixth order Butterworth bandpass filt
and we set the filter parameters by comparing the power spe
tral density given no stimulus with the output power spectra
density with the robot stationary in the distal part of the plume
Given that we want to select a frequency range that provides tt
highest possible SNR, we use bandpass cutoff values of .3
1.8 Hz based on the data shown in Fig. 5. Although the senso
can respond at higher frequencies, no information is available
above 2 Hz given our transduction circuitry and experimentﬁg- 7. Total plume hits received by six real robots over 1 h while performing
conditions. The amplitude threshold for odor detection is setRf2"9om walk behavior.
four times the baseline standard deviation (recorded from 10 000
samples taken at an average rate of 85 Hz following calibratiojs 8 m from the plume source shows that a significant plume
to render false positives improbable. stimulus exists to be tracked, even in the distal plume region
When executing the odor localization algorithm, the odd¥here odor information is intermittent. Mapping the plume
sensor polling rate averages 85 Hz. Because the robot CPW$§d a random walk behavior indicates that the plume is stable
performing the polling, the filtering and handling all other taskgVer time and across robots (see Figs. 7 and 8).
the robot requires (e.g., communications, high-level motor
control, and memory management), the sensor polling rateds Wind Sensor
not precise and we do not use a real time Linux kernel (which The anemometer is a Shibaura F6201-1 air flow sensor, as
could provide reliable, although slower, polling rates) due to thesed by [16], which can sense wind flow down to .05 m/s. Itis
overhead it requires. We do not account for this imprecision énclosed in a tube to provide unidirectional sensitivity, which,
the digital filter and treatment of the polling jitter, through, folrombined with a scanning behavior, allows the robot to measure
example, the use of a dedicated microcontroller to take sensond direction. When wind direction information is required,
readings, could increase sensitivity. However, the combinatitime robot first rotates 90then rotates slowly 36@vhile reading
of the calibration procedure and digital filtering produces #he wind sensor output and finally rotates back to the heading
robust binary odor detection sensor. Fig. 6 compares raw asaresponding to the highest sensor value. The robot takes the
filtered data from the distal end of the plume against filtereshortest path back to the desired heading and either over or under
baseline data from the same sensor. The detection thresholtes to the target to account for the 1 s time delay of the in-
is plotted 4 std above 0 and the raw data has been DC shiftechal anemometer processing circuitry. The initial rotation re-
about —3 V for ease of presentation. The presence of odduces the probability that the robot begins facing upwind, in
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Fig. 10. Webots plume traversal arena with average plume intensity map.

Fig. 8. Plume hits received by six individual real robots over 1 h while
performing a random walk behavior.
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3 ) 3 and thus is very sensitive to inter-agent repulsion parameters,

[m] nonembodied simulations, which can only approximate such
interactions, are not able to provide faithful results. Thus,
Fig. 9. Average wind direction in plume traversal arena as measured by {ig yse Webots [31], a three-dimensional (3-D) sensor-based
real robots. Plume source at upper right. Arrow lengths are proportional to tfglenematic simulator 'ori inally develoned for Khepera robots ’
uniformity of flow direction at the tail of each arrow. o g y p p "
[32], to systematically investigate the performance of SS in
_ ) o ) ) simulation. This embodied simulator has previously been
which case the discontinuity in the scanning behavior can dgyqn, 1o generate data that closely matches real Khepera [10],
grade the resulting wind direction yalue. Wind sensor'perfof"m], [33] and Moorebot [12] experiments, so we are confident
mance has yet to be fully characterized due to the requiremefs; real robot behavior is accurately captured.
of a suitable testing environment (flow must be laminar), al- \ye performed simulations in an arena modeled after the phys-
though the data from the odor localization experiments SUGQERLS) arena, as shown in Fig. 10, to verify that our simulator pro-
itis sufficient for the given task. A wind map of 2102 individualy,ces accurate results and we also used a 25 times (area) larger

samples averaged spatially is shown in Fig. 9. arena, which is large enough to allow study of the full odor
. . , localization problem (see Fig. 11). The agent behavioral algo-
E. Embodied Simulation rithms correspond exactly to those used by the real robots. To

When studying the performance of distributed robotiproperly capture the plume stimulus, we incorporated a series
systems, it can be useful to model the system using differasftleaky source 2-D PLIF plume images generated in a water
levels of abstraction. Successful modeling provides a way fiime by Donald Webster and Philip Roberts at the Georgia In-
understanding the essential aspects of the system, as well asitate of Technology, Atlanta, [34], [35]. Such plume movies,
significantly decreased evaluation time, which enables a mareen though they do not capture the influence of the agents on
complete investigation of the system parameter space. Modglisme dynamics, offer a good approximation to the discretized
also allow treatment of environmental conditions which (fofpacket-like) nature of odor stimulus received in real environ-
some technical limitation) cannot be implemented physicalljpents. We scaled the recorded plume data to imitate the average
In this work, the use of a model permits us to enlarge ttgpeed and envelope of the real plume data (see Figs. 12 and 7)
search arena and examine agent performance on the full odod tuned the odor sensitivity threshold (higher threshold leads
localization problem. Because the source declaration phaseaamless odor information) based on performance observed in our
the task can lead to elevated agent densities around the soueed arena. Odor hit frequency differences between the real and
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TABLE Il
PLUME TRAVERSAL PARAMETER VALUES
Agent speed .325 m/s
100 Arena length 6.7 m
Plume length 8m
Plume speed ~1 m/s
Source find radius .88 m
Plume:Arena area 1:2.3
Goal:Search perimeter 1:18.0
TMIN 19.0 s
DMIN 6.2 m
s .326 [m/s]
8S1: SPIRALGAP2 1785 km
SS1: STEPSIZE 91m
$S2: SPIRALGAP2 357 m
$82: STEPSIZE 91 m
. . . S 151
Fig. 12. Plume hits received by six simulated robots over 1 h. — Tsf-S81
- = Tsf- 882

...... Tsf — Random Odor
+= = Tsf — Random Walk

simulated maps are due to the fact that for efficiency the simt
lated sensors are bandwidth limited only by the update rate «
the plume data (10 Hz) rather than by a bandpass filter like th _ 4.

—_——

one used on the real robots (.3—-1.8 Hz). While we used the sar$ I

plume stimulus in both arenas, simulations of the physical arerg X I

incorporate flow information taken directly from the real robot ¢ ~., I N I
data (as shown in Fig. 9) and in the larger arena, in an effort t £ BRI I

emulate more open flow patterns, wind information is generate~ s} %"m/ B Tl --. -3
by adding+10% white noise to a constant direction parallel to I\" "m,}‘

the main plume axis. ¥ ]

IV. RESULTS AND DISCUSSION
A. Real Robots 1 2

The real robots experiments focus on the plume traversal sup-
task because it contains most of the plume related complexiy. 13. Normalized time across group size for real robot trials. Lower values
present in the full odor localization task and due to experimengig better.
limitations it is not feasible to study all phases with real robots
at this time. Since source declaration is not being studied, a tfiahs, but due to practical limitations in our experimental set-up,
is complete when a robot reaches a given distance, the sout®Random Odor case was easier to implement and provided
find radius, from the plume source. To justify the high densitgquivalent information from a proof-of concept point of view.
of agents in the plume (which would be unlikely given that iRandom Walk takes straight line paths and random avoidance
the general problem the plume area is a small percentage oftilmas at boundaries (using no odor or flow information) to
total search area), we allowrARACT communication between provide a traversal performance baseline. Specific parameters
the agents to hold the group together as it traverses the plunrelating to the real robot tests are listed in Table IIl. 15 trials of

We tested real robot plume traversal performance usiegch group size were run f861, S32 andRandom Odor and
two sets of SS parameters and two control experiments. OBl trials were run foRandom Walk due to the high variance
SPIRALGAP2 and SEPSIZE are considered because we aref performance values. All error bars in the plots represent
looking only at the plume traversal aspect of the ta&¥&i standard error.
represents a nonlocal search in that its search paths are straigkitgs. 13 and 14 show that for all conditions studied, traversal
and its surges extend to the boundaries of the aig8auses time decreases with group size while group distance traveled
a smaller spiral gap and surge length to perform a more lodatreases. This indicates, as expected for a search task, that
exploration of the aren&®andom Odor usesSS2 parameters as time becomes more important to performance than energy
and receives odor hits that are generated from the time sequemsage, larger group sizes will be preferred.
of 352 odor hits but are not correlated with robot position in Fig. 15 shows that while single robots are generally most effi-
the arena. This control experiment investigates whether an @kent in this arena (given this particular choicencfnd/3), SS1
gorithm incorporating precise odor packet location informatiogenerates the best results for each group size (significant via
is more efficient than a blind upwind surging behavior. AK-S test top < .01 for group sizec {1, 2, 3}), demonstrating
alternative experiment could be to decouple the wind soursaeccessful real robot plume traversgdndom Odor performs
from the odor source by creating a wind field with an array aflorse thanss2 for all group sizes (significant as above for

3 4 5 6
Group Size
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Fig. 14. Normalized distance across group size for real robot trials. Lowgld:- 16. Performance of real robot and Webots trials across group size. Higher
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values indicate better performance.

group size. All parameters in Table 11l apply to the Webots data
as well. Onlyss1 for group size of one robot produces signif-
icantly different results (as determined by a 2-tailed K-S test
with p < .01) between Webots and the real robots and even in
this case the error bars overlap. Because our Webots data closely
matches our available real robot data, it is reasonable that fur-
ther simulated experiments will accurately reflect real world be-
havior.

C. Full Odor Localization Task

The principal limitation of the experiments described thus far
is the relatively small arena available for the real robots. In sim-
ulation we can expand the arena size and move the start area
outside the plume extent. This enables the study of all phases
of the odor localization task and calls for a change to the task
stopping condition. Source declaration defines the end of a trial

Fig. 15. Performance across group size for real robot trials. Higher valugnd the time and distance data below contains only trials that re-

indicate better performance.

group sizec {1,2,4,6}), indicating that location of odor in-

sult in a successful source declaration, i.e., a declaration of the
source within the source found radius.
Techniques are under development to optimize system perfor-

formation is an important aspect of the search algorithm. Thisance across the entire array of SS parameters, but for the pur-
means that SS is actually plume tracing rather than simply lgoses of this work, to illustrate that a distributed group of sensors
calizing the source of the wind, because if it were only wingan confront the odor localization problem and show that simple
localizing, one would expe®andom Odor to perform exactly communication can affect performance, a functional set will suf-
the same ass2. Also, Ss2 performs worse thags1 (signifi-  fice. The SS parameters are based%® because in comparison
cant as above for all group sizes), suggesting that local seaggls1 its tight casting spirals are more likely to result in small
is not a good strategy in this small arena where the goal-i@ter-hitdistances. We assigri8ALGAP1 to alarge value to gen-
search perimeter ratio is high (i.e., it is likely to find the goabrate straight line search paths, ses€TIME to a behaviorally
by chance). Th@andom Walk behavior retains relatively con- reasonable value and fix the source declare parameters in a func-
stant performance across group size and at the larger group stggifal regime. For the sake of simplicity, all communication sig-
its performance tends to approach the optimal observed pgais are assumed to extend throughout the testing arena. Environ-
formance. This suggests that as a search arena becomes guehtal and algorithmic parameter values that differ from the real
crowded, random movement becomes the best strategy.  robots experiments are shown in Table IV.
. , ) We examine the performance impact of the three types of com-

B. Embodied Simulations munication described earlierdNig, ATTRACT, and KiLL , which

We successfully reproduced the real robot performance datarespond to parameter sdéitsne, Attract, andkill. 1500
in Webots, as shown in Fig. 16. Data represents 1000 trials peals were performed for each parameter set and group size.
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TABLE IV oo8sp e
FuLL TASK PARAMETER VALUES (SIMULATION ) 0.08l I E-?,ne
—_— Ki
Arena Length 33.6 m 0.075t
Plume:Arena Area 1:58
Goal:Search Perimeter | 1:55 . 0.07f
Wind Noise +10% X
SPIRALGAP1 3570 m % 0.065
SPIRALGAP2 357 m > 0.06 3
N i -~ J-
STEPSIZE 9lm 9 g .
CasTTIME 96 s % 0.085} z
SRCDECTHRESH 2Tm 8 005 x,
SRCDECCOUNT 3 2= ,/"‘!
0045 X,
501 oo04r T x
- Desd Attract
+ 45l == Dcsd None B 0.035— . . . ) . . . . ;
@ || === Dcsd Kill o 1 2 3 4 5 & 7 8 9 10
2 aoll Tesd Attract = Group Size
3 == Tecsd None X
§35¢- = Tesd Kil s = Fig. 18. Performance across group size and communication type. Higher
S : values are better.
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Fig. 17. Normalized time and distance to find source across group size ago.zs—
communication type.

an

Do.24F

M

Fig. 17 shows the time and distance necessary for each grc
of robots to find the source of the plume. Note that qualitativel .23 : ; ] . : : ‘ ) :
the curves resemble those of Figs. 13 and 14, as one would Group Size
pect, except here the reduction in time with group size is more
pronounced. This is a result of the increased significance of thig. 19. Median distance from source upon declaration across group size and
search phase of the task, which benefits more directly from tFEn"munication type.
parallel nature of distributed random search than the other phases.
In fact, the traverse and declare phases are possibly done bedt seimportant to note that these results, particularly the relative
rially, askill, which uses only one agentforthesetasks, requirefficiencies of the different communication types, are likely to be
shorter group distances than the other sets. However, note tieavily dependent on the task description. More complex plume
Killneedsmoretimethalne tocompletethetaskasgroupsizestimuli (containing a sparser signal or more large scale meander)
grows, whichisareflectiononthe hightemporal costof plume losisat are more difficult for individual robots to track should favor
when the parallel plume-reacquisition search capability is loslystems that achieve higher agent densities in the plume. This is
Attract does not seem to offer any benefits at all, as it uses th#ficult to test currently because real plume data with large scale
same amount of time &i11 but much more energy. This is duemeander are not available, although this is an avenue of ongoing
to a high interference rate as the agents collect in the plume, irasearch.
peding in particular the proper spiral search paths necessary foFig. 19 shows the effect of group size on declaration accu-
source declaration. racy across plume type. All communication types are able to

Fig. 18indicatestha&tillisthe mostefficientformof commu- yield high success rates-( 95%) for low group sizes, with
nication for this environment, with its substantial energy savingsly None's performance dropping off to below 70% at the
outweighingits slightly longer running times. Also, again for thigarge group sizeg.i11 maintains a constant performance across
environment, the efficiency peaks at a group size of five agengsoup size, as should be expected because only one robot is
In fact, all of the communication types peak at group sizes largagrforming the operation. More interestingigne degrades at
than 1, which suggests that distributing and coordinating senstanger group sizes, whilettract does not. This can be ex-
in this manner is an effective way to increase system efficien@fained if the agents idttract, even though their physical
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>
)

= "= Time to find plume tributed algorithm by which groups of agents can solve the odor

3 i = Time to fraverse plume localization task. Because this algorithm is based upon both

Dot Time to declare plume : : P ; FOR ;

3 . - - Distance to find plume odor and fI_ow m_formathn, itis not designed to fgncﬂon in envi-

< 0y = Distance to traverse plume ronments in which flow is too weak to detect reliably (typically

510 % Distance to declare plume < .05 m/s [19]). Still, there are a broad range of military and in-

§ “ dustrial situations that involve stronger flows (in particular, any

g 8 1‘ outdoor environment) for which it does apply.

é 3, Next, because we were able to show that our robots could

€ 6r R detect plume information as far as 8 m away from the source,

g s e me e we established that conducting polymer-based odor sensors

5 ap oo m B e R " possess the combination of speed and sensitivity necessary to

g IR DU SO "'.')‘.',‘:,' ““““ R enable real world odor plume tracing. This is important because

g 2+ """"":‘-r-,.,,.,_,,,_:;=§ previous efforts at mobile robotic odor localization [17] relied

g :—-—;—-‘:;'S&'ﬁ‘ R on slower sensor technologies which in turn restricted the
0 : : ; ‘ ‘ . ' ; classes of algorithms that could be applied. Yet, through an

1 2 3 4 5 6
Group Size

appropriate combination of calibration and filtering techniques
we showed it is possible to overcome the lack of stability
Fig. 20. Normalized time and distance across group size for different subtagkperent in polymer odor sensors and investigate new algorithm
for Kill. domains permitted by fast response times and low-power,
. ) ) L ) lightweight (i.e., potentially mobile) odor sensors. Note we
interactions are repulsive, are able to maintain gughtly C'Péfe not proposing that polymer sensors are the only suitable
tered group at the head of the plume through their communicgs,sor type for all environments and robotic applications.
tion S|gnals._Thus, even though physical |ntera<_:t|ons slow do"m\ther, these findings suggest that response times should be
the declaration process, when source declaration does occurig e in along with steady-state sensitivity when selecting
declaring agent s likely to be near the plume source. HOWeVEsensor for a particular task and sensor precision may have
becauselone also has repulsive physical interactions but n0 &g inished importance because even binary odor concentration
tractive force other than the plume itself, the cloud of agenfssormation can be useful for an odor localization system.
fo;mec:haround the head of tth?hplumebwgl_ll_tbe Ife‘:’ﬁ dgnsle AN%we also demonstrated that simple sensory information tightly
when here are many agents the probabiiity of the dec arl@gupled with robot behavior is sufficient to allow a robot to
agent being far from the source increases. It is important to n(ﬁp? the source of an odor plume. This shows the power of

.th?t thi.s € rebs utl\t; deptcra]nd hea\tnly Ot:]. tEe details oftthle phde|| f grating actuation into sensory systems and suggests that
interactions between the agents, which are accurately mode plicated sensory transduction may not be necessary when

by the embodied simulator, although interactions between t eoehaving sensory mechanism is well tuned to its designated

E;féne and the agents (which are not modeled) may also plaYa%k [36]. In addition, we showed that integrating the informa-

] . . tion collected by a group of agents in an elementary manner
Fig. 20 offers a detailed look &ill performance during y & group 9 y

h task ph Time to find the ol is defined as the | can increase the efficiency of the odor localization system
each task pnase. 1ime to find the plume 1S defined as the fen formance, an avenue that has not been previously explored
of time from the start of the trial to the first odor plume en-

using real robots. If we view the entire system as an odor

counter. Time to traverse the plume is defined as the amounﬁ alization sensor, the distributed approach opens up a new

time betwee_n theﬂ_rstodorencountergnd arobotentering W'”HQis of optimization (inter-agent communication) not available
the source find radius of the source. Time to declare the plum

. . ) . When only a single unit is considered and the organizational
the time between entering the source find region anq declarllg nciples of Sl allow such distributed systems to remain scal-
.tthat tze pltutr)neir?as been fgu?d. No:et?hat forr::m)r/] part'(_:rl;]lart.t” le and require minimal additional complexity. The particular
'f. n(;afh nci € de Samero Qﬂ::ompe ng eact tE ase. ; Itm munication types explored in this paper represent the most
ind e plume decreases With group size, yetine group distaiet . jaractions available and as the complexity of the task
remains nearly constant, indicating that the random search is gz—

. : scription increases (more complicated plume types, higher
fectively parallel. Also note that at high numbers of agents, bﬁéquencies of false-positive odor hits), correspondingly more

cause th(;y alltstart in the same Iocar?on, alperformz?r?ce fe?%l%plicated interaction schemes (greater number of signals,
appears due fo unhecessary search overlap hear Ine start giggy, o signaling range) will likely be necessary to yield a
Since only a single robot is performing the traversal and dec Srformance benefit. More work needs to be done to deter-

ration tasks for all group sizes, it is not surprising that the ti ine how this complex parameter space can be explored in
required does not change and the linear increase in group %S'ystematic way,

tance can be attributed to the nonzero energy consumption Oiinally, it may seem contradictory that while the SI approach

the inactive robots. stressed in this paper emphasizes minimalism, the actual robots
used in this study feature general purpose microprocessors and
high bandwidth communication. However, because care was
This paper presented an investigation of odor localization bgken to keep system requirements low, the algorithms used
groups of autonomous mobile robots. First, we described a dis-this study can be ported directly to much less expensive or

V. CONCLUSION
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Fig. 21. Alice robot with 400 element olfaction chip.

(10]

(11]

(12]

(13]

[14]
(15]

[16]

(17]

(18]

(19]

smaller platforms, such as the Alice robot [37] shown in Fig. 21[20]
Only when robot swarms can be implemented on a large scale
will the robust nature of these systems be fully exploited. Ag21]
more advanced sensors become available which can combine
sensitivity, discrimination, and mobility, such as the polymer[zz]
odor sensing matrix consisting of 400 elements integrated on
a chip [38] shown next to the Alice, truly useful real-world odor

localization systems will become feasible.

(23]

[24]
ACKNOWLEDGMENT

We would like to thank O. Holland, S. Kazadi, J. Pugh, R.[25]
Enright, L. Van Tol, and A. Lundsten for their contributions on
various hardware and software aspects of the project. We woulds]
also like to thank our collaborators in the DARPA-ONR Chem-

ical Plume Tracing Program for their valuable input.

(1]

(2]

(3]

4]
(5]

(6]
(7]
(8]
El

(27]

REFERENCES

R. T. Carde and A. Mafra-Neto, “Effect of pheromone plume struc- [28]
ture on moth orientation to pheromone,” FPerspectives on Insect
Pheromones. New FrontierR. T. Carde and A. K. Minks, Eds. New
York: Chapman & Hall, 1996, pp. 275-290.

J. H. Belanger and M. A. Willis, “Adaptive control of odor guided lo-
comotion: Behavioral flexibility as an antidote to environmental unpre-
dictability,” Adap. Beh.vol. 4, pp. 217-253, 1996.

U. Bhalla and J. M. Bower, “Multi-day recording from olfactory bulb [30]
neurons in awake freely moving rats: Spatial and temporally organized
variability in odorant response propertie$,'Comput. Neurosgivol. 4,

pp. 221-256, 1997. [31]
J. Atema, “Eddy chemotaxis and odor landscapes: Exploration of nature
with animal sensors Biol. Bull., vol. 191, pp. 129-138, 1996. [32]
M. J. Weissburg, “From odor trails to vortex streets: Chemo and
mechanosensory orientation in turbulent and laminar flowsQiiien-
tation and Communication in ArthropodM. Lehrer, Ed. Munich,
Germany: Basel Birkhauser, 1997, pp. 215-246.

R. A. Russell,Odor Detection by Mobile Robats Singapore: World
Scientific, 1999.

E. Bonabeau, M. Dorigo, and G. Theraul&yarm Intelligence: From
Natural to Artificial Systems New York: Oxford Univ. Press, 1999.

R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Robotics Automatvol. RA-2, pp. 14-23, Mar. 1986.

R. C. Arkin, Behavior Based Robotics Cambridge, MA: MIT Press,
1998.

(29]

(33]

(34]

(35]

IEEE SENSORS JOURNAL, VOL. 2, NO. 3, JUNE 2002

A. Martinoli, A. J. ljspeert, and F. Mondada, “Understanding collective
aggregation mechanisms: From probabilistic modeling to experiments
with real robots,"Robot. Auton. Systvol. 29, pp. 51-63, 1999.

O. E. Holland and C. Melhuish, “Stigmergy, self-organization and
sorting in collective robotics Artificial Life, vol. 5, pp. 173-202, 1999.

A. T. Hayes, A. Martinoli, and R. M. Goodman, “Comparing distributed
exploration strategies with simulated and real autonomous robots,”
Proc. Fifth Int. Symp. Distributed Auton. Robotic Syst. DARS-2000
261-270, Oct. 2000.

A. J. ljspeert, A. Martinoli, A. Billard, and L. M. Gambardella, “Col-
laboration through the exploitation of local interactions in autonomous
collective robotics: The stick pulling experimenfuton. Robotsvol.

11, no. 2, pp. 149-171, 2001.

C.R.Kube and E. Bonabeau, “Cooperative transport by ants and robots,”
Robot. Auton. Systvol. 30, pp. 85-101, 2000.

J. Murlis, J. S. Elkington, and R. T. Carde, “Odor plumes and how insects
use them,”Annu. Rev. Entomolvol. 37, pp. 505-532, 1992.

H. Ishida, Y. Kagawa, T. Nakamoto, and T. Moriizumi, “Odor-source lo-
calization in the clean room by an autonomous mobile sensing system,”
Sens. Actuators,Brol. 33, pp. 115-121, 1996.

T. Nakamoto, H. Ishida, and T. Moriizumi, “A sensing system for odor
plumes,”Anal. Chem.vol. 71, no. 15, pp. 531A-537A, Aug. 1999.

R. A. Russell, D. Thiel, R. Deveza, and A. Mackay-Sim, “A robotic
system to locate hazardous chemical leak&dc. IEEE Int. Conf.
Robotics Automatpp. 556-561, 1995.

H. Ishida, T. Nakamoto, T. Moriizumi, T. Kikas, and J. Janata, “Plume-
tracking robots: A new application of chemical sensoBsg!. Bull., vol.

200, pp. 222-226, April 2001.

S. Kazadi, R. Goodman, D. Tsikata, and H. Lin, “An autonomous water
vapor plume tracking robot using passive resistive polymer sensors,”
Auton. Robotsvol. 9, no. 2, pp. 175-188, 2000.

C.T.David, J. S. Kennedy, J. S. Ludlow, and J. N. Perry, “A re-appraisal
of insect flight toward a point source of wind-borne odai,”"Chem.
Ecology vol. 8, pp. 1207-1215, 1982.

N. J. Vickers and T. C. Baker, “Reiterative responses to single strands
of odor promote sustained upwind flight and odor source location by
moths,”Proc. Nat. Academy Sg¢ivol. 91, pp. 5756-5760, 1994.

D. W. Gage, “Randomized search strategies with imperfect sensors,”
SPIE Proc, vol. 2058, pp. 270-279, Sept. 1993.

D. R. Webster, S. Rahman, and L. P. Dasi, “On the usefulness of bilat-
eral comparison to tracking turbulent chemical odor plumesyinol.
Oceanographyvol. 46, no. 5, pp. 1048-1053, 2001.

A. F. T. Winfield and O. E. Holland, “The application of wireless local
area network technology to the control of mobile roboldi¢roprocess.
Microsyst, vol. 23, pp. 597-607, 2000.

H. T. Nagle, R. Guitierrez-Osuna, and S. S. Schiffman, “The how and
why of electronic noses)EEE Spectrunwvol. 35, no. 9, pp. 22-31, Sept.
1998.

M. C. Lonergan, E. J. Severin, B. J. Doleman, S. A. Beaber, R. H.
Grubbs, and N. S. Lewis, “Array-based vapor sensing using chemically
sensitive, carbon black-polymer resistor€hem. Mater. vol. 8, pp.
2298-2312, 1996.

M. S. Freund and N. S. Lewis, “A chemically diverse conducting
polymer-based electronic nose?toc. Nat. Academy Sgivol. 92, p.
2652, 1995.

B. J. Doleman, M. C. Lonergan, E. J. Severin, T. P. Vaid, and N. S. Lewis,
“Quantitative study of the resolving power of arrays of carbon black-
polymer composites in various vapor-sensing tasksdl. Chem.vol.

70, pp. 4177-4190, 1998.

A. J. Matzger, C. E. Lawrence, R. H. Grubbs, and N. S. Lewis, “Com-
binatorial approaches to the synthesis of vapor detector arrays for use in
an electronic nose,J. Comb. Chemvol. 2, pp. 301-304, 2000.

O. Michel, “Webots: Symbiosis between virtual and real mobile robots,”
Proc. First Int. Conf. Virtual Worlds, VW’9&p. 254-263, July 1998.

F. Mondada, E. Franzi, and P. lenne, “Mobile robot miniaturization: A
tool for investigation in control algorithmsProc. Third Int. Symp. Ex-
perimental Robotics ISER-98p. 501-513, 1993.

A. Martinoli, A. J. ljspeert, and L. G. Gambardella, “A probabilistic
model for understanding and comparing collective aggregation mecha-
nisms,”Proc. Fifth Int. Eur. Conf. Artificial Life ECAL-9%p. 575-584,
September 1999.

D. R. Webster and M. J. Weissburg, “Chemosensory guidance cues in a
turbulent chemical odor plumellimnol. Oceanographyol. 46, no. 5,

pp. 1034-1047, 2001.

D. R. Webster, S. Rahman, and L. P. Dasi, “Laser-induced fluorescence
measurements of a turbulent plum&SCE J. Eng. Mech2002, to be
published.



HAYES et al. DISTRIBUTED ODOR SOURCE LOCALIZATION 271

[36] B. Webb, “View from the boundaryBiol. Bull., vol. 200, pp. 184-189,
April 2001.

[37] G. Caprari, P. Balmer, R. Piguet, and R. Siegwart, “The autonomo
microrobot Alice: A platform for scientific and commercial appli-
cations,” Proc. Ninth Int. Symp. Micromechatron. Human Sgp.
231-235, November 1998.

Rodney M. Goodman (M’85) received the B.Sc.
degree with honors in electrical engineering from
Leeds University, Yorkshire, U.K., in 1968, and the
Ph.D. degree in electronics from the University of
Kent, Canterbury, U.K., in 1976.
From 1975 to 1985, he was a member of the faculty
[38] J. A. Dickson and R. M. Goodman, “Integrated chemical sensors bas of the Department of Electrical and Electronic Engi-
on carbon black and polymer films using a standard cmos process ¢ neering, University of Hull, U.K. In 1985, he joined
post-processing,Proc. 2000 IEEE Int. Symp. Circuits Syst., Emerging the faculty of the California Institute of Technology
Technol. for the 21st Centurpp. 341-344, May 2000. al \‘L‘ (Caltech), Pasadena, where he was Professor of elec-
trical engineering until September 2001. He left Cal-
tech in October 2001 to focus on his entrepreneurial activities and is currently a
. consultant to several advanced technology start-up companies in the Pasadena
Adam T. Hayes received the A.B. degree (magnagre, including Cyrano Sciences, the electronic nose company, of which he is a
cum laude) in computer science from Harvard Unixonger. In addition, he is currently Faculty Associate in electrical engineering
versity, Cambridge, MA, in 1998, and the Ph.D. de- caltech. Dr. Goodman'’s current research interests are in intelligent informa-
gree in computation and neural systems from the Cafjony processing systems, electronic nose technology, and distributed communi-
ifornia Institute of Technology, Pasadena, in 2002. ¢4tions networks of sensors and actuators. In particular, novel control architec-

His dissertation focused on a methodology foryres for multiple autonomous mobile robots and machine consciousness are
designing self-organized robotic systems that €Mseing pursued.

phasizes task implementation and employs machine
learning techniques to assist system development.
This design process has been applied to the task of
odor localization to demonstrate its capabilities. His
current research interests include the development of biologically motivated
sensory systems that enable autonomous robots to function in dynamic
environments.

Alcherio Martinoli (M'99) received the M.Sc.
in electrical engineering from the Swiss Federal
Institute of Technology, Zirich (ETHZ), in 1992,
and the Ph.D. degree in computer science from the
Swiss Federal Institute of Technology, Lausanne
" ] (EPFL), in 1999. His Ph.D. focused on modeling
and performance prediction of distributed, mobile,
robotic systems, evolutionary methods for designing
and optimizing distributed control algorithms,
L J and development of collective-specific tools for
experiments with miniature robots.

From 1992 to 1994, he spent one year as Research Scientist with the Insti-
tute of Biomedical Engineering of the ETHZ and one year at the Institute of
Industrial Automation of the Spanish Research Council, Madrid, Spain. He is
currently Senior Research Fellow and head of the Collective Robotics Group
at the California Institute of Technology, Pasadena. His research interests in-
clude swarm intelligence, collective robotics, distributed control for embedded
systems, and machine-learning optimization techniques applied to distributed
problems.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


