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Distributed Odor Source Localization
Adam T. Hayes, Alcherio Martinoli, Member, IEEE, and Rodney M. Goodman, Member, IEEE

Abstract—This paper presents an investigation of odor localiza-
tion by groups of autonomous mobile robots. First, we describe a
distributed algorithm by which groups of agents can solve the full
odor localization task. Next, we establish that conducting polymer-
based odor sensors possess the combination of speed and sensitivity
necessary to enable real world odor plume tracing and we demon-
strate that simple local position, odor, and flow information, tightly
coupled with robot behavior, is sufficient to allow a robot to localize
the source of an odor plume. Finally, we show that elementary com-
munication among a group of agents can increase the efficiency of
the odor localization system performance.

Index Terms—Chemical plume tracing, collective autonomous
robotics, distributed sensing, odor localization, olfaction, swarm
intelligence.

I. INTRODUCTION

RECENT advances have been made in understanding bi-
ological odor localization and tracking as developed in

moths [1], [2] and rats [3] in the air and lobsters [4] and stom-
atopods [5] in water. Biology utilizes olfaction for a wide variety
of tasks including finding others of the same species, communi-
cation, behavior modification, avoiding predators and searching
for food. Animals use a combination of hardware (frequency
of receptor adaptation, perhaps), software (temporal integration
and/or spatial integration) and behavioral search strategies (both
intrinsic and landmark-based) to locate odor sources. Odor lo-
calization is in essence a behavioral problem that varies from an-
imal to animal. While some animals exploit fluid information at
different layers (lobster) or several residues on the ground (ants),
others can track odors in the air (moths) or use a combination of
information (dogs). From an engineering standpoint, there are
advantages to combining odor tracking with mobile robots [6],
such as in the detection of chemical leaks and the chemical map-
ping of hazardous waste sites. We are interested in developing
groups of small mobile robots that use odor tracking algorithms,
multiple sensory modalities (e.g., odometry, anemometry, olfac-
tion), and sensory fusion to search out and identify sources of
odor.
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We design the agent control algorithms using principles
of swarm intelligence (SI), a computational and behavioral
metaphor for solving distributed problems that takes its inspi-
ration from biological examples provided by social insects.
In most biological cases studied so far, robust and capable
group behavior has been found to be mediated by nothing more
than a small set of simple interactions among individuals and
between individuals and the environment [7]. The application
of SI principles to autonomous collective robotics aims to
develop robust task solving by minimizing the complexity of
the individual units and emphasizing parallelism, exploitation
of direct or indirect interactions, and distributedness. These
principles favor the design of behavior-based robotic systems,
similar at the individual level to those of Brooks [8] and Arkin
[9], which emphasize tight coupling between sensation and
action, avoidance of representational knowledge and action
decomposition into contextually meaningful units [9]. The
main advantages of the SI approach are three: first, scalability
from a few to thousands of units; second, flexibility, as units
can by dynamically added or removed without explicit reorga-
nization; third, increased system robustness, not only through
unit redundancy, but also through the design of minimalist
units. Several examples of collective robotics tasks solved with
SI principles can be found in the literature: aggregation [10]
and segregation [11], beacon localization [12], stick pulling
[13], and collective transportation [14].

The aim of the case study described in this paper is four-fold.
First, we describe a distributed algorithm by which groups of
agents can solve the full odor localization task. Second, we
establish that conducting polymer-based odor sensors possess
the combination of speed and sensitivity necessary to enable
real world odor plume tracing. Third, we demonstrate via real
robots and embodied simulations that simple sensory informa-
tion tightly coupled with robot behavior is sufficient to allow an
agent to find the source of an odor plume. Last, we show that
integrating the information collected by a group of agents in an
elementary manner can increase the efficiency of the odor lo-
calization system performance.

II. ODOR LOCALIZATION PROBLEM

A. Task Description

The general odor localization problem addressed in this
paper is as follows: find a single odor source in an enclosed
two-dimensional (2-D) area as efficiently as possible. This can
be broken down into three subtasks: plume finding—coming
into contact with the odor, plume traversal—following the odor
plume to its source and source declaration—determining from
odor acquisition characteristics that the source is in the imme-
diate vicinity. Plume finding amounts to a basic search task,
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with the added complication, due to the stochastic nature of
the plume, that a simple sequential search is not guaranteed to
succeed. Plume traversing requires more specialized behavior,
both to progress in the direction of the source and to maintain
consistent contact with the plume. Source declaration does not
necessarily have to be done using odor information, as typically
odor sources can be sensed via other modalities from short
range, but here we propose a solution using no extra sensory
apparatus.

As an odor source dissolves into a fluid medium, an odor
plume is formed. The turbulent nature of fluid flow typically
breaks the plume into isolated packets, areas of relative high
concentration surrounded by fluid that contains no odor [15].
The task of odor localization is thus one of plume traversal, or
following the trail of odor packets upstream to the source. This
becomes difficult as odor packets become more sparse (due to
source intermittency and diffusion below detectable levels) and
more dispersed (due to flow meander).

Previous odor localization research has utilized concentra-
tion gradient information to locate the centerline of a plume and
then either anemotaxis [16], [17] or further chemotaxis [18] to
proceed to the source. These systems were restricted to oper-
ation in the proximal region of the plume (within 2 m of the
source) and had to move slowly (.01–.03 m/s) so that concen-
tration gradient information could be extracted with reasonable
accuracy using sensors with sub-Hz response or recovery times.
Although these efforts were successful in demonstrating the fea-
sibility of odor localization with mobile robots, it is not clear
that any method that involves spatial concentration extraction
will extend to more sparse plumes (i.e., longer plume tracking
distances), since , as odor information becomes less frequent,
concentration integration times will increase, decreasing system
performance accordingly [19]. Moreover, these investigations
were limited by the speed of the sensors they incorporated. In
the distal plume region where plume information is intermittent,
sensors that are too slow to register passing odor packets are of
little use.

B. Biological Inspiration

Although the approach of moving slowly and continually
sampling odor and flow data to reduce environmental noise
is used in nature (starfish) and has been applied to robotic
systems [17], [20], environmental and behavioral constraints
(e.g., significant plume sparseness or meander, time critical
performance) can render these systems ineffective. In that
case, upon sensing an odor signal, a good policy is to move
directly upwind, as a good immediate local indication of
source direction under such circumstances is the instantaneous
direction of flow [21]. When the odor is no longer present, a
good strategy is to perform a local search (known as casting in
the biological literature) until it is reacquired, as the location
of the previous packet encounter provides the best immediate
estimate of where the next will occur. This type of surge-cast
behavior has been observed in moths [22] and its performance
has been studied in simulation [2].

The previous work on this odor localization algorithm was
aimed at studying biology, which limited the sensory and be-
havioral time scales investigated. When applying these ideas to

Fig. 1. Spiral Surge odor localization behavior.

artificial systems, however, the separation between algorithm
and underlying hardware is much more clear and it no longer
makes sense to constrain behavior strictly by sensory response
characteristics. Therefore, in this work key aspects of the search
behavior, such as surge duration and casting locality, are treated
as algorithm parameters.

C. The Spiral Surge Algorithm

The basic odor localization algorithm used in this study, spiral
surge (SS), is shown in Fig. 1. It consists of different behaviors
related to the three different subtasks.

Plume finding is performed by an initial outward spiral search
pattern (SPIRALGAP1). This allows for thorough coverage of the
local space if the total search area is very large and initial infor-
mation can be provided by the deployment point (an external
best guess as to source location). Alternatively, if noa priori
knowledge is available, a spiral with a gap much greater than
the arena size (producing essentially straight line search paths)
provides an effective, although not optimal [23], search proce-
dure.

Plume traversal is performed using a type of surge algorithm.
When an odor packet is encountered during spiraling, the robot
samples the wind direction and moves upwind for a set dis-
tance (STEPSIZE). If during the surge another odor packet is en-
countered, the robot resets the surge distance but does not re-
sample the wind direction. After the surge distance has been
reached, the robot begins a spiral casting behavior, looking for
another plume hit. The casting spiral can be tighter than the
plume finding spiral (SPIRALGAP2), as post surge the robot has
information about packet density and a thorough local search
is a good strategy. If the robot subsequently re-encounters the
plume, it will repeat the surging behavior, but if there is no addi-
tional plume information for a set amount of time (CASTTIME),
the robot will declare the plume lost and return to the plume
finding behavior (with a wider, less local, spiral gap parameter).

Source declaration can be accomplished using the fact that a
robot performing the plume traversal behavior at the head of a
plume will tend to surge into an area where there is no plume
information and then spiral back to the origin of the surge be-
fore receiving another odor hit. If the robot keeps track inter-
nally of the post spiral inter-hit distances (using odometry, for
example, which is sufficient because information must be accu-
rate only locally), a series of small differences can indicate that
the robot has ceased progress up the plume and must therefore
be at the source. However, because small inter-hit distances can
occur in all parts of the plume, this method is not foolproof and
tuning of the difference threshold (SRCDECTHRESH), as well as
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TABLE I
SPIRAL SURGE ALGORITHM PARAMETERS

the number of observed occurrences before source declaration
(SRCDECCOUNT), is required to obtain a particular performance
within a given plume. See Table I for a summary of individual
SS parameters.

SS uses only binary odor information generated from a single
plume sensor because this is the most simple and reliable type
of information that can be obtained from real hardware in the
temporal operating regime of interest. There may be informa-
tion encoded in distal fine plume structure [24], however, due
to the highly stochastic nature of turbulent fluid flow and the
odor-packet nature of the plume, it is unclear that more complex
sensing—via graded intensity information or larger fixed sensor
arrays—would benefit an odor localizing agent when flow infor-
mation is available through other means.

D. Collaborative Spiral Surge

While more complex odor sensing may be beneficial to the
odor localization task, another possible route to greater effi-
ciency is physical distribution of the odor sensing elements,
which, in principle, could improve system speed and robustness
via parallelization of the search procedure. This can be achieved
by constructing an arbitrarily large and complex single robot
or, perhaps more conveniently, distributing a number of sen-
sors throughout a group of smaller, more simple communicating
robots. With a suitable command and control interface, this col-
lective can be viewed as an odor localization sensor in much the
same way a single larger robot, or more generally device, could.
One way to increase the performance of such a robot swarm is
collaboration between individual nodes. In particular, if collab-
oration is obtained with simple explicit communication schemes
such as binary signaling, the team performance can be enhanced
without losing autonomy or significantly increasing complexity
at the individual level.

Several simple types of communication can be integrated into
basic SS. In this study, we examine the performance impact of
three types of communication: no communication (NONE), a
come here signal emitted by upwind surging robots that causes
all robots downwind or with no plume information to surge in
the direction of the calling robot (ATTRACT) and a stop signal
emitted by the first robot to receive odor information that causes
all other robots to surge away from the signaling robot and then
enter a power save mode from which they cannot be awakened
(KILL ). We investigate the influence of these types of commu-
nication across group size to determine their impact on system
efficiency.

E. Odor Localization Performance

To study odor localization, we place groups of agents within a
starting area inside an enclosed arena containing an odor plume.
Over repeated trials, we measure the time and distance traveled
by the whole group until the group completes the task, which can
be defined in a number of ways: an agent comes within a given
radius of the plume source (allocentric determination—useful
to emulate a nonodor related target sensor that each robot might
carry), an agent declares the plume source found (egocentric
determination, no additional sensor necessary), or any combi-
nation and extension (i.e., multiple declarations required within
a given radius) thereof. In this paper, we examine both single
robot allo- and egocentric stopping criteria, so for the purposes
of performance, we simply assume that some measure of time
and group energy (which can be considered proportional to the
sum of the individual distances traveled) necessary for task com-
pletion exist ( , ).

Efficiency for the odor localization task cannot be defined in
the general case. Instead, we combine the two basic measures
of task performance in a task specific manner. Since these mea-
sures are physically independent, a composite metric incorpo-
rating a particular weighting of these two basic factors can be
considered.

(1)

(2)

is an arbitrary weighting of time and distance. By choosing
specific values for and , the appropriate relationship can be
generated for evaluating any particular application. The form of

ensures that for anyand greater than 0, the optimal system
will achieve a performance of 1 and any that require more time
or distance will have a performance less than 1. We determine
the optimum values for the given task ( , ) from
an agent executing the optimal behavior (a straight line path
from start to goal areas at maximum speed). Maximum speed,
which determines the relationship between the time and distance
values, is determined by the maximum safe operating speed of
the agent in the given environment. In this study, we setand
so that the time and energy components of the task factor equally
into the minimum cost, so .

III. M ATERIALS AND METHODS

A. Real Robots

We use Moorebots, as shown in Fig. 2, which were originally
designed by Owen Holland at the University of West England,
Bristol, U.K. Each 24 cm diameter robot is equipped with two
DC motor-driven wheels, a castor wheel, a 2 Mbit wireless LAN
transceiver and 12-bit A/D and D/A converters. See [25] for a
more detailed robot description. We extended this basic con-
figuration with four infra-red range sensors for collision avoid-
ance, a single odor sensor and a hot wire anemometer. On-board
high-level control is provided by a PC104 based Intel 386 pro-
cessor running Linux. Low level control, such as motor speed
regulation, is executed by dedicated hardware interfaced to the
PC104 bus.
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Fig. 2. Moorebot equipped with wind, odor, and proximity sensors, as well as
markings for overhead tracking.

B. Robot Arena and Infrastructure

The plume traversal arena is 6.7 by 6.7 m. The odor plume is
created by a 23 cm square hot water pan and a bank of five fans
30 cm in diameter and it extends diagonally from one corner of
the arena toward the opposite corner. Flow characteristics based
on data taken along the plume axis 15 cm above the floor are
summarized in Table II. The coefficient of variation is a measure
of the intensity of the flow turbulence. It represents the ratio of
the standard deviation of the wind velocity to the mean wind
velocity and 20% is a value typically measured outdoors [16].

The robot start area is located in the corner opposite the plume
source. An overhead camera tracking system, combined with
a radio LAN among the robots and an external workstation, is
used to log position data during the trials, reposition the robots
between trials, and emulate the binary communication signals.
Trials of different group size are interleaved and inactive robots
are automatically positioned at recharging stations. The arena
layout, as seen from the overhead camera, is shown in Fig. 3.

C. Odor Sensor

While many types of odor sensing technology currently exist
[26], a good combination of ease of transduction, reversibility,
reproducibility, tunability, ease of production, robustness across
environments, miniaturization, and speed is offered by carbon-
doped polymer sensors [27]. This odor sensor detects the pres-
ence of an airborne substance through a change in the electrical
resistance of a chemically sensitive carbon-doped polymer film
[28]. While this type of sensor can lack baseline stability, it is
very fast (response times.1 s [20]) and signal processing tech-
niques can be used to counteract its baseline drift.

We fabricate sensors from solutions consisting of 20% carbon
black and 80% polymer (poly-vinylpyrrolidone) dissolved in
dichlormethane, using methods as described in [29]. The con-
ducting polymer solution is spray coated [30] onto the surface of
a surface mount universal board so that the sensor film closes the
circuit between two mounting pads. Polymer solution is applied
until sensor resistance nears 100 kOhm and baseline resistances
typically settle to a value between 30 and 300 kOhm after a 24
h drying period. A sensor close-up can be seen in Fig. 4.

TABLE II
WIND FIELD CHARACTERIZATION

Fig. 3. Real robot arena as seen from overhead camera.

Fig. 4. Odor sensor close-up.

The interface circuitry applies an input bias voltage across
a multiplexer selectable range resistor to generate a current
through the sensor via a Wilson current source. The output
voltage across the sensor is then filtered to remove high
frequency noise and buffered for reading. The variable bias
voltage and selectable range resistor allow a wide range of
sensor baseline resistances (10 kto 10 M ) and automatic
calibration, an important feature because polymer sensors are
difficult to fabricate precisely and their baselines drift over
time. The calibration procedure consists of switching through
all range resistors with the bias voltage centered (and no
stimulus present), choosing the resistor that results in an output
closest to the desired output and then adjusting the bias voltage
until the desired baseline output is achieved. The resistor and
bias values are then stored for later use. The desired output
value is 25% of the ADCs range, as the sensor values are more
likely to drift up than down.

Previous versions of the interface circuit used a local analog
feedback loop to maintain the output voltage at a constant level.
However, this low-pass hardware filtering attenuated not only
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Fig. 5. Power spectral density of the odor sensor output when no stimulus is
present and when the robot is in the distal end of plume.

the sensor drift but the signal as well, reducing sensor sensi-
tivity. Sensitivity is crucial for the study of plume tracing, be-
cause the agents must be able to sense a meaningful plume struc-
ture, not simply respond when very close to the odor source. In
our indoor experimental set-up, room ventilation is limited, so
enhancement of the plume signal is not an option. Thus, instead
of using analog feedback, we digitally filter the output signal
and record an odor hit whenever the filtered signal rises above
some threshold. We use a sixth order Butterworth bandpass filter
and we set the filter parameters by comparing the power spec-
tral density given no stimulus with the output power spectral
density with the robot stationary in the distal part of the plume.
Given that we want to select a frequency range that provides the
highest possible SNR, we use bandpass cutoff values of .3 to
1.8 Hz based on the data shown in Fig. 5. Although the sensors
can respond at higher frequencies, no information is available
above 2 Hz given our transduction circuitry and experimental
conditions. The amplitude threshold for odor detection is set at
four times the baseline standard deviation (recorded from 10 000
samples taken at an average rate of 85 Hz following calibration)
to render false positives improbable.

When executing the odor localization algorithm, the odor
sensor polling rate averages 85 Hz. Because the robot CPU is
performing the polling, the filtering and handling all other tasks
the robot requires (e.g., communications, high-level motor
control, and memory management), the sensor polling rate is
not precise and we do not use a real time Linux kernel (which
could provide reliable, although slower, polling rates) due to the
overhead it requires. We do not account for this imprecision in
the digital filter and treatment of the polling jitter, through, for
example, the use of a dedicated microcontroller to take sensor
readings, could increase sensitivity. However, the combination
of the calibration procedure and digital filtering produces a
robust binary odor detection sensor. Fig. 6 compares raw and
filtered data from the distal end of the plume against filtered
baseline data from the same sensor. The detection threshold
is plotted 4 std above 0 and the raw data has been DC shifted
about 3 V for ease of presentation. The presence of odor

Fig. 6. Raw distal plume data, filtered distal plume data and filtered baseline
data. The threshold is 4 std above 0.

Fig. 7. Total plume hits received by six real robots over 1 h while performing
a random walk behavior.

hits 8 m from the plume source shows that a significant plume
stimulus exists to be tracked, even in the distal plume region
where odor information is intermittent. Mapping the plume
using a random walk behavior indicates that the plume is stable
over time and across robots (see Figs. 7 and 8).

D. Wind Sensor

The anemometer is a Shibaura F6201-1 air flow sensor, as
used by [16], which can sense wind flow down to .05 m/s. It is
enclosed in a tube to provide unidirectional sensitivity, which,
combined with a scanning behavior, allows the robot to measure
wind direction. When wind direction information is required,
the robot first rotates 90, then rotates slowly 360while reading
the wind sensor output and finally rotates back to the heading
corresponding to the highest sensor value. The robot takes the
shortest path back to the desired heading and either over or under
rotates to the target to account for the 1 s time delay of the in-
ternal anemometer processing circuitry. The initial rotation re-
duces the probability that the robot begins facing upwind, in
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Fig. 8. Plume hits received by six individual real robots over 1 h while
performing a random walk behavior.

Fig. 9. Average wind direction in plume traversal arena as measured by the
real robots. Plume source at upper right. Arrow lengths are proportional to the
uniformity of flow direction at the tail of each arrow.

which case the discontinuity in the scanning behavior can de-
grade the resulting wind direction value. Wind sensor perfor-
mance has yet to be fully characterized due to the requirements
of a suitable testing environment (flow must be laminar), al-
though the data from the odor localization experiments suggests
it is sufficient for the given task. A wind map of 2102 individual
samples averaged spatially is shown in Fig. 9.

E. Embodied Simulation

When studying the performance of distributed robotic
systems, it can be useful to model the system using different
levels of abstraction. Successful modeling provides a way of
understanding the essential aspects of the system, as well as a
significantly decreased evaluation time, which enables a more
complete investigation of the system parameter space. Models
also allow treatment of environmental conditions which (for
some technical limitation) cannot be implemented physically.
In this work, the use of a model permits us to enlarge the
search arena and examine agent performance on the full odor
localization problem. Because the source declaration phase of
the task can lead to elevated agent densities around the source

Fig. 10. Webots plume traversal arena with average plume intensity map.

Fig. 11. Layout of larger Webot arena.

and thus is very sensitive to inter-agent repulsion parameters,
nonembodied simulations, which can only approximate such
interactions, are not able to provide faithful results. Thus,
we use Webots [31], a three-dimensional (3-D) sensor-based,
kinematic simulator, originally developed for Khepera robots
[32], to systematically investigate the performance of SS in
simulation. This embodied simulator has previously been
shown to generate data that closely matches real Khepera [10],
[13], [33] and Moorebot [12] experiments, so we are confident
that real robot behavior is accurately captured.

We performed simulations in an arena modeled after the phys-
ical arena, as shown in Fig. 10, to verify that our simulator pro-
duces accurate results and we also used a 25 times (area) larger
arena, which is large enough to allow study of the full odor
localization problem (see Fig. 11). The agent behavioral algo-
rithms correspond exactly to those used by the real robots. To
properly capture the plume stimulus, we incorporated a series
of leaky source 2-D PLIF plume images generated in a water
flume by Donald Webster and Philip Roberts at the Georgia In-
stitute of Technology, Atlanta, [34], [35]. Such plume movies,
even though they do not capture the influence of the agents on
plume dynamics, offer a good approximation to the discretized
(packet-like) nature of odor stimulus received in real environ-
ments. We scaled the recorded plume data to imitate the average
speed and envelope of the real plume data (see Figs. 12 and 7)
and tuned the odor sensitivity threshold (higher threshold leads
to less odor information) based on performance observed in our
real arena. Odor hit frequency differences between the real and
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Fig. 12. Plume hits received by six simulated robots over 1 h.

simulated maps are due to the fact that for efficiency the simu-
lated sensors are bandwidth limited only by the update rate of
the plume data (10 Hz) rather than by a bandpass filter like the
one used on the real robots (.3–1.8 Hz). While we used the same
plume stimulus in both arenas, simulations of the physical arena
incorporate flow information taken directly from the real robot
data (as shown in Fig. 9) and in the larger arena, in an effort to
emulate more open flow patterns, wind information is generated
by adding 10 white noise to a constant direction parallel to
the main plume axis.

IV. RESULTS AND DISCUSSION

A. Real Robots

The real robots experiments focus on the plume traversal sub-
task because it contains most of the plume related complexity
present in the full odor localization task and due to experimental
limitations it is not feasible to study all phases with real robots
at this time. Since source declaration is not being studied, a trial
is complete when a robot reaches a given distance, the source
find radius, from the plume source. To justify the high density
of agents in the plume (which would be unlikely given that in
the general problem the plume area is a small percentage of the
total search area), we allow ATTRACT communication between
the agents to hold the group together as it traverses the plume.

We tested real robot plume traversal performance using
two sets of SS parameters and two control experiments. Only
SPIRALGAP2 and STEPSIZE are considered because we are
looking only at the plume traversal aspect of the task.
represents a nonlocal search in that its search paths are straight
and its surges extend to the boundaries of the arena.uses
a smaller spiral gap and surge length to perform a more local
exploration of the arena. uses parameters
and receives odor hits that are generated from the time sequence
of odor hits but are not correlated with robot position in
the arena. This control experiment investigates whether an al-
gorithm incorporating precise odor packet location information
is more efficient than a blind upwind surging behavior. An
alternative experiment could be to decouple the wind source
from the odor source by creating a wind field with an array of

TABLE III
PLUME TRAVERSAL PARAMETER VALUES

Fig. 13. Normalized time across group size for real robot trials. Lower values
are better.

fans, but due to practical limitations in our experimental set-up,
the case was easier to implement and provided
equivalent information from a proof-of concept point of view.

takes straight line paths and random avoidance
turns at boundaries (using no odor or flow information) to
provide a traversal performance baseline. Specific parameters
relating to the real robot tests are listed in Table III. 15 trials of
each group size were run for , and and
30 trials were run for due to the high variance
of performance values. All error bars in the plots represent
standard error.

Figs. 13 and 14 show that for all conditions studied, traversal
time decreases with group size while group distance traveled
increases. This indicates, as expected for a search task, that
as time becomes more important to performance than energy
usage, larger group sizes will be preferred.

Fig. 15 shows that while single robots are generally most effi-
cient in this arena (given this particular choice ofand ),
generates the best results for each group size (significant via
K-S test to for group size ), demonstrating
successful real robot plume traversal. performs
worse than for all group sizes (significant as above for
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Fig. 14. Normalized distance across group size for real robot trials. Lower
values are better.

Fig. 15. Performance across group size for real robot trials. Higher values
indicate better performance.

group size ), indicating that location of odor in-
formation is an important aspect of the search algorithm. This
means that SS is actually plume tracing rather than simply lo-
calizing the source of the wind, because if it were only wind
localizing, one would expect to perform exactly
the same as . Also, performs worse than (signifi-
cant as above for all group sizes), suggesting that local search
is not a good strategy in this small arena where the goal-to-
search perimeter ratio is high (i.e., it is likely to find the goal
by chance). The behavior retains relatively con-
stant performance across group size and at the larger group sizes
its performance tends to approach the optimal observed per-
formance. This suggests that as a search arena becomes over-
crowded, random movement becomes the best strategy.

B. Embodied Simulations

We successfully reproduced the real robot performance data
in Webots, as shown in Fig. 16. Data represents 1000 trials per

Fig. 16. Performance of real robot and Webots trials across group size. Higher
values indicate better performance.

group size. All parameters in Table III apply to the Webots data
as well. Only for group size of one robot produces signif-
icantly different results (as determined by a 2-tailed K-S test
with ) between Webots and the real robots and even in
this case the error bars overlap. Because our Webots data closely
matches our available real robot data, it is reasonable that fur-
ther simulated experiments will accurately reflect real world be-
havior.

C. Full Odor Localization Task

The principal limitation of the experiments described thus far
is the relatively small arena available for the real robots. In sim-
ulation we can expand the arena size and move the start area
outside the plume extent. This enables the study of all phases
of the odor localization task and calls for a change to the task
stopping condition. Source declaration defines the end of a trial
and the time and distance data below contains only trials that re-
sult in a successful source declaration, i.e., a declaration of the
source within the source found radius.

Techniques are under development to optimize system perfor-
mance across the entire array of SS parameters, but for the pur-
poses of this work, to illustrate that a distributed group of sensors
can confront the odor localization problem and show that simple
communication can affect performance, a functional set will suf-
fice. The SS parameters are based on, because in comparison
to its tight casting spirals are more likely to result in small
inter-hitdistances.WeassignSPIRALGAP1 toa largevalue togen-
erate straight line search paths, set CASTTIME to a behaviorally
reasonable value and fix the source declare parameters in a func-
tional regime. For the sake of simplicity, all communication sig-
nals are assumed to extend throughout the testing arena. Environ-
mental and algorithmic parameter values that differ from the real
robots experiments are shown in Table IV.

We examine the performance impact of the three types of com-
munication described earlier: NONE, ATTRACT, and KILL , which
correspond to parameter sets , , and . 1500
trials were performed for each parameter set and group size.
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TABLE IV
FULL TASK PARAMETER VALUES (SIMULATION )

Fig. 17. Normalized time and distance to find source across group size and
communication type.

Fig. 17 shows the time and distance necessary for each group
of robots to find the source of the plume. Note that qualitatively
the curves resemble those of Figs. 13 and 14, as one would ex-
pect, except here the reduction in time with group size is more
pronounced. This is a result of the increased significance of the
search phase of the task, which benefits more directly from the
parallelnatureofdistributedrandomsearch thantheotherphases.
In fact, the traverse and declare phases are possibly done best se-
rially,as ,whichusesonlyoneagent for these tasks, requires
shorter group distances than the other sets. However, note that

needsmoretimethan tocompletethetaskasgroupsize
grows,whichisareflectiononthehightemporalcostofplumeloss
when the parallel plume-reacquisition search capability is lost.

does not seem to offer any benefits at all, as it uses the
same amount of time as but much more energy. This is due
to a high interference rate as the agents collect in the plume, im-
peding in particular the proper spiral search paths necessary for
source declaration.

Fig.18indicatesthat is themostefficient formofcommu-
nication for this environment, with its substantial energy savings
outweighing its slightly longer running times.Also,again for this
environment, the efficiency peaks at a group size of five agents.
In fact, all of the communication types peak at group sizes larger
than 1, which suggests that distributing and coordinating sensors
in this manner is an effective way to increase system efficiency.

Fig. 18. Performance across group size and communication type. Higher
values are better.

Fig. 19. Median distance from source upon declaration across group size and
communication type.

It is important to note that these results, particularly the relative
efficiencies of the different communication types, are likely to be
heavily dependent on the task description. More complex plume
stimuli (containing a sparser signal or more large scale meander)
that are more difficult for individual robots to track should favor
systems that achieve higher agent densities in the plume. This is
difficult to test currently because real plume data with large scale
meander are not available, although this is an avenue of ongoing
research.

Fig. 19 shows the effect of group size on declaration accu-
racy across plume type. All communication types are able to
yield high success rates ( 95 ) for low group sizes, with
only ’s performance dropping off to below 70% at the
large group sizes. maintains a constant performance across
group size, as should be expected because only one robot is
performing the operation. More interestingly, degrades at
larger group sizes, while does not. This can be ex-
plained if the agents in , even though their physical
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Fig. 20. Normalized time and distance across group size for different subtasks
for Kill.

interactions are repulsive, are able to maintain a tightly clus-
tered group at the head of the plume through their communica-
tion signals. Thus, even though physical interactions slow down
the declaration process, when source declaration does occur the
declaring agent is likely to be near the plume source. However,
because also has repulsive physical interactions but no at-
tractive force other than the plume itself, the cloud of agents
formed around the head of the plume will be less dense and
when there are many agents the probability of the declaring
agent being far from the source increases. It is important to note
that these results depend heavily on the details of the physical
interactions between the agents, which are accurately modeled
by the embodied simulator, although interactions between the
plume and the agents (which are not modeled) may also play a
role.

Fig. 20 offers a detailed look at performance during
each task phase. Time to find the plume is defined as the length
of time from the start of the trial to the first odor plume en-
counter. Time to traverse the plume is defined as the amount of
time between the first odor encounter and a robot entering within
the source find radius of the source. Time to declare the plume is
the time between entering the source find region and declaring
that the plume has been found. Note that for any particular trial,
it need not be the same robot completing each phase. The time to
find the plume decreases with group size, yet the group distance
remains nearly constant, indicating that the random search is ef-
fectively parallel. Also note that at high numbers of agents, be-
cause they all start in the same location, a performance penalty
appears due to unnecessary search overlap near the start area.
Since only a single robot is performing the traversal and decla-
ration tasks for all group sizes, it is not surprising that the time
required does not change and the linear increase in group dis-
tance can be attributed to the nonzero energy consumption of
the inactive robots.

V. CONCLUSION

This paper presented an investigation of odor localization by
groups of autonomous mobile robots. First, we described a dis-

tributed algorithm by which groups of agents can solve the odor
localization task. Because this algorithm is based upon both
odor and flow information, it is not designed to function in envi-
ronments in which flow is too weak to detect reliably (typically

.05 m/s [19]). Still, there are a broad range of military and in-
dustrial situations that involve stronger flows (in particular, any
outdoor environment) for which it does apply.

Next, because we were able to show that our robots could
detect plume information as far as 8 m away from the source,
we established that conducting polymer-based odor sensors
possess the combination of speed and sensitivity necessary to
enable real world odor plume tracing. This is important because
previous efforts at mobile robotic odor localization [17] relied
on slower sensor technologies which in turn restricted the
classes of algorithms that could be applied. Yet, through an
appropriate combination of calibration and filtering techniques
we showed it is possible to overcome the lack of stability
inherent in polymer odor sensors and investigate new algorithm
domains permitted by fast response times and low-power,
lightweight (i.e., potentially mobile) odor sensors. Note we
are not proposing that polymer sensors are the only suitable
sensor type for all environments and robotic applications.
Rather, these findings suggest that response times should be
factored in along with steady-state sensitivity when selecting
a sensor for a particular task and sensor precision may have
diminished importance because even binary odor concentration
information can be useful for an odor localization system.

We also demonstrated that simple sensory information tightly
coupled with robot behavior is sufficient to allow a robot to
find the source of an odor plume. This shows the power of
integrating actuation into sensory systems and suggests that
complicated sensory transduction may not be necessary when
a behaving sensory mechanism is well tuned to its designated
task [36]. In addition, we showed that integrating the informa-
tion collected by a group of agents in an elementary manner
can increase the efficiency of the odor localization system
performance, an avenue that has not been previously explored
using real robots. If we view the entire system as an odor
localization sensor, the distributed approach opens up a new
axis of optimization (inter-agent communication) not available
when only a single unit is considered and the organizational
principles of SI allow such distributed systems to remain scal-
able and require minimal additional complexity. The particular
communication types explored in this paper represent the most
basic interactions available and as the complexity of the task
description increases (more complicated plume types, higher
frequencies of false-positive odor hits), correspondingly more
complicated interaction schemes (greater number of signals,
variable signaling range) will likely be necessary to yield a
performance benefit. More work needs to be done to deter-
mine how this complex parameter space can be explored in
a systematic way.

Finally, it may seem contradictory that while the SI approach
stressed in this paper emphasizes minimalism, the actual robots
used in this study feature general purpose microprocessors and
high bandwidth communication. However, because care was
taken to keep system requirements low, the algorithms used
in this study can be ported directly to much less expensive or
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Fig. 21. Alice robot with 400 element olfaction chip.

smaller platforms, such as the Alice robot [37] shown in Fig. 21.
Only when robot swarms can be implemented on a large scale
will the robust nature of these systems be fully exploited. As
more advanced sensors become available which can combine
sensitivity, discrimination, and mobility, such as the polymer
odor sensing matrix consisting of 400 elements integrated on
a chip [38] shown next to the Alice, truly useful real-world odor
localization systems will become feasible.
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