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images by use of correlation filters
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We introduce subband correlation filters �SCFs� as a solution to the problem of object recognition at
multiple resolution levels in quantized transformed imagery. The approach synthesizes correlation
filters that operate directly on subband coefficients rather than on image data. We explore two tech-
niques to accomplish the reduced-resolution recognition: �1� training the correlation filters to incorpo-
rate downsampling tolerance and �2� adaptation of the subband decomposition filters to accommodate the
reduced resolutions. For compression ratios of 20:1, SCFs demonstrate recognition performance of at
least 90%, 85%, and 75%, respectively, on 2-, 4-, and 8-ft-resolution synthetic aperture radar data.
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1. Introduction

Images take an enormous amount of memory; hence
they are typically stored in a compressed format, yet
many applications need quick searches of large image
databases. When one works with compressed im-
ages, however, the objective is often to do a fast cur-
sory search across the data, even if that entails a
reduction in recognition accuracy. Performing a
quick search of images in the quantized transform
space suggests that we exploit the multiple resolu-
tions available in a subband decomposition of image
data.

We address two parallel questions: Can we per-
form object recognition at lower resolutions with rea-
sonable accuracy? and How does the accuracy
degrade with decreasing bit rate? The approach
manifested in subband correlation filters �SCFs� is
twofold: �1� We perform both the training and the
operating phases of object recognition directly on the
subband coefficients at multiple resolution levels,
and �2� we combine the multiple subband responses
with polynomial correlation filters �PCFs�, a powerful
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architecture developed by Mahalanobis and Vijaya
Kumar1 for fusing multiple inputs into a single cor-
relation output.

Toward this end, we pursue the intuitive idea of
synthesizing a correlation filter from each of the in-
dividual subbands in a subband decomposition and
then processing each subband with its corresponding
filter to achieve a pattern match for object classifica-
tion. We call this approach subband coefficient-
domain processing. Aside from the issue of fusing
the multiple outputs, a larger issue that affects this
approach is the variation in the subband patterns
owing to the downsampling properties of subband
coders.

We combine two techniques to mitigate effectively
the downsampling effects encountered when using
subband coder architectures to perform reduced-
resolution recognition. First, we train the correla-
tion filters over multiple shifts of the training data to
instantiate downsampling tolerance directly in the
object-recognition domain. Second, we design the
subband decomposition filters to reduce the down-
sampling effects present in the reduced resolutions of
the compression domain. Together, these two pro-
cedures aid our approach to combining correlation
filters with subband coders as a solution to the prob-
lem of object recognition at multiple resolution levels
in quantized transformed imagery.

Our purpose in this paper is not to advance the field
of correlation filtering or subband decomposition but
to combine them for the purpose of object recognition
at multiple resolutions of transformed data. Cur-
rent systems typically perform the reconstruction



�i.e., the inverse of compression� and recognition
tasks serially. They fully uncompress the stored im-
ages and then apply an object recognizer to the re-
constructed data. In general, the reconstructed
data are of a lower quality than the original owing to
quantization during the compression step. Walls
and Mahalanobis2 used this method on synthetic ap-
erture radar �SAR� imagery; Liu and Mitra3 followed
the technique using fingerprint data; Shin and Kil4
employed the paradigm with sonar images; and vi-
sual images of tanks underwent the same approach
by Miller.5 In addition, multiresolution analysis
does not benefit from current systems of working with
compressed imagery. The Walls and Mahalanobis
paper2 provides us with baseline results for compar-
ison with our own experiments.

As a brief initiation into subband coders and cor-
relation filters, Section 2 provides a review of these
research areas. Notation and terminology that we
use throughout this paper are defined in Section 3.
Section 4 introduces PCF theory and its function in
the fusion of subband information. We present the
concept of subband coefficient-domain processing in
Section 5. In addition, this section discusses the
downsampling issue inherent in coefficient-domain
processing and suggests two methods to ameliorate
the effect. Next, we examine the two methods pro-
posed in Section 5: a training technique and a
quadrature mirror filter �QMF� design technique, in
Sections 6 and 7, respectively. Section 8 reports the
performance of the SCF system along with the effects
of decreasing bit rates. For future modifications,
Section 9 proposes possible extensions to the SCF
model presented here. Finally, Section 10 concludes
the paper with a review of the SCF system: its per-
formance, benefits, and limitations.

2. Brief Review of Correlation Filters and Subband
Coders

To date, correlation filters and subband decomposi-
tion have been treated as separate disciplines. Thus
we provide a little background on the history of both
fields.

A. Correlation Filters

Some of the earliest research in object recognition
grew out of the matched filter originating in the field
of communications.6,7 It is well known that a
matched spatial filter is optimum for the detection of
an object in a single image in the presence of additive
white noise.6 In such a system, a cross correlation is
performed between the stored filter and the image in
question. If the correlation exceeds a predeter-
mined threshold, then the image is declared to con-
tain the object of interest. The use of matched
spatial filters grew throughout the 1960’s and 1970’s,
with a good discussion and synopsis given in An-
drews,8 Duda and Hart,9 and Pratt.10 Unfortu-
nately, wide variability in an object’s characteristics
makes the matched spatial filter a brittle method of
object recognition. Matched spatial filters, however,

provided the basis for the evolution of the more so-
phisticated correlation filters.

Classical pattern-recognition techniques began
with correlation-filtering models in the 1980’s. Cor-
relation filters are specially formulated generaliza-
tions of the matched spatial filter, which are able to
recognize many different views of an object in the
presence of signature variations and in clutter.
They were born out of synthetic discriminant func-
tions, which themselves evolved from linear combi-
nations of matched spatial filters.11 A good
introduction to correlation filter theory is given in
Vijaya Kumar et al.12 and in Vijaya Kumar.13 The
two most important steps in the evolution of correla-
tion filters came when Vijaya Kumar14 introduced
minimum-variance SDFs to maximize SDF noise tol-
erance and when Mahalanobis et al.15,16 introduced
minimum average correlation energy filters capable
of producing sharp correlation peaks at the same lo-
cation as the shifted input.

In general, correlation filters are composites of sev-
eral training images representative of a particular
object, thus mitigating the brittle characteristics of a
matched spatial filter. Moreover, correlation filter
theory suggests that the minimum average correla-
tion height �MACH� filter is statistically optimum for
detecting objects in additive noise, when Gaussian
assumptions hold.17 Correlation filters, however,
are still not robust enough to perform recognition
over wide variations of an object. Multiple correla-
tion filters are formed for different aspects of an ob-
ject.

SAR imagery forms a specific domain of object rec-
ognition. To date, successful object recognition in
SAR imagery primarily involves template matching
and correlation filters. Matched spatial filters �as
known as template matching� were first applied to
SAR imagery in the mid-1980’s.18,19 Currently, both
Novak et al.20–22 and Hostetler23 perform cross cor-
relation with template filters. These templates are
formed from a mean image, over 5° spans of each
object within each object class. Thus, for 360° view-
ing aspects of each object class, the template method
requires 72 templates for each class.

Correlation filters, although similar to template
matching, form more global descriptions of the ob-
jects under consideration. They were first used on
SAR imagery in Mahalanobis et al.,24–26 and recently
good results have been shown by use of correlation
filters over 45° spans of the object classes. This
method requires only eight correlation filters per ob-
ject class.

Most recently Mahalanobis and Vijaya Kumar
have developed PCFs1 that provide a vehicle for more
powerful object recognition by fusion of correlation
filter responses over multiple input sources. The
PCF architecture permits object recognition with
multisensor data and forms the backbone of the sub-
ject of this paper, SCFs. In a novel twist on PCFs,
SCFs employ correlation over the multiple subbands
in a subband decomposition.
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B. Image Compression

The objective of image compression is to reduce the
number of bits of information necessary to represent
a given image by elimination of redundancy in the
image or by introduction of distortion into the image
in a manner that is acceptable to the viewer or, in our
case, to the object recognizer. A good summary of
image-compression techniques is given in Sayood.27

Transform coding, developed by Andrews8 and An-
drews and Pratt28,29 was the big step in compression
of two–dimensional data. A current popular image-
compression technique, the JPEG method,30 com-
bines transform and predictive coding. The main
detriment of JPEG coding is that it produces blocking
artifacts at low bit rates.

The most recent image-compression technique is
subband coding. Detailed information about sub-
band coding can be found in Vaidyanathan,31 Vetterli
and Kovacevic,32 and also in Strang and Nguyen.33

The technique, first introduced for speech coding in
the 1970’s, centers around splitting an image into
multiple frequency bands and then coding the result-
ing coefficients. In that regard, it is similar to trans-
form coding. Subband coding differs, however, in
that it is not block based but rather applies the fil-
tering operation to the entire image.

Subband coding is easily extended to two dimen-
sions by analysis of the input signal independently in
the horizontal and vertical directions. A typical level
of a multiresolution image decomposition will have
four subbands of information: one composed of only
low-frequency components, the low–low �LL� subband;
two containing both high- and low-frequency compo-
nents, the high–low �HL� and low–high �LH� sub-
bands; and one consisting of only high-frequency
components, the high–high �HH� subband. Often,
subband literature refers to the high-frequency sub-
bands �HL, LH, and HH� collectively as the upper
subbands.

Subband coders became more popular and viable
with the advent of perfect reconstruction, made inde-
pendently by Vaidyanathan34,35 and Vetterli.36 In
the absence of quantization and ignoring machine
round-off error, subband coders can thus provide loss-
less compression. Subband coders are most often
used in lossy compression; however, in that case the
compression rate relates directly to the degree of
quantization. Compression applications typically
use perfect reconstruction filters34–37 in both lossless
and lossy compression. A popular set of perfect re-
construction filters are the QMFs,38,35,37 which we use
in this research. Again, our purpose is not to im-
prove the compression power and quality of QMFs
but to optimize their effectiveness with an object-
recognition model, the correlation filter.

3. Notation and Definitions

Images in the space domain are denoted in lower-case
italics, and upper-case italics represent their coun-
terpart in the frequency domain. Thus a two-
dimensional image x�m, n� has Fourier transform

X�k, l �. Vectors are expressed by lower-case bold
characters, and matrices are denoted by upper-case
bold characters. Either x�m, n� or X�k, l � can be
expressed as a column vector x by lexicographical
scanning. We define lexicographical scanning to
proceed columnwise, unless otherwise stated. The
quantities XT, X*, Xt, and X�1 signify, respectively,
the transpose, conjugate, transpose conjugate, and
inverse of X. Correlation and convolution are des-
ignated by the symbols R and �, respectively. The
quantity x̂�n� refers to a reconstructed version of the
original signal x�n�.

To bridge the two disparate fields brought together
in this paper, we provide some nuances of the termi-
nology used throughout the paper. Note that the
definitions used in this paper do not necessarily hold
universally throughout the literature.

• The term correlation filter is synonymous with
object-recognition filter and MACH filter.

• The subband coder employed in this paper uses
a QMF filter, which we use interchangeably with the
term subband decomposition filter.

• When we reconstruct the image with a subband
coder, we use synthesis filters; therefore the terms
reconstructed signal and synthesized signal repre-
sent the same thing. Yet, when we create the
MACH filter, we synthesize it from its training input.

• A subband coder forms the heart of a compres-
sion system. When no ambiguity results, the term
coding is at times used to mean compressing; some-
times, however, we also encode symbols with their
representative code words.

• Compression does not take place until the coef-
ficients in the subband coder are quantized to total
fewer than the number of bits in the original image
�typically, 8 bits per pixel�. At the typical digitiza-
tion of 8 bits per coefficient, the subband coder is
simply another representation of the original image.

• A multiresolution decomposition, pyramid de-
composition, subband decomposition, and hierarchi-
cal decomposition are all the same entity, for the
purposes of this paper.

• Analysis filters form the forward compression
transform, whereas the inverse compression trans-
form uses synthesis filters �also known as interpola-
tion filters�.

• The subband literature denotes the first level of
decomposition as the highest level because it contains
the highest-resolution data. The last level of decom-
position is known as the lowest level.

• The high-frequency subbands in a subband de-
composition are known collectively as the upper sub-
bands.

4. Subband Fusion with Polynomial Correlation Filters

Although many of the fusion techniques residing in
the information-processing literature may be appli-
cable, we selected PCFs because they are a direct
extension of standard correlation filters. A detailed
description of PCFs is given in Mahalanobis and Vi-
jaya Kumar,1 in which the use of PCFs with mul-

6476 APPLIED OPTICS � Vol. 42, No. 32 � 10 November 2003



tiresolution data was first suggested. PCFs embody
a multiple-input–single-output system. Given mul-
tiple inputs, a PCF system calls for a like number of
correlation filters, each corresponding to one input.
Yet, the system produces a single correlation surface
output.

In our application the number of inputs is equal to
the number of subbands in one level of a pyramid
decomposition. The architecture diagrammed in
Fig. 1 illustrates our use of PCFs. In future re-
search, however, a system may integrate any subset
of a subband decomposition, as discussed in Section
9.

Mathematically, the output of a general PCF is
expressed as

y�m, n� � �
p�1

P

cp�m, n� � xp�m, n�, (1)

where P is the number of input channels, xp�m, n� is
the data present at the input of each channel, and
cp�m, n� is the filter function for each channel. In
our case, each subband forms one channel. These
filters are formulated to jointly maximize the peak
value of y�m, n� while minimizing the effects of dis-
tortions and noise. Equation �1� gives the appear-
ance that PCF theory augments standard correlation
by only a simple summation. The real power behind
PCF theory, however, lies in the simultaneous opti-
mization of the filters for multiple channels during
training.

Typically, correlation processing is done in the fre-
quency domain for the purpose of computational ef-
ficiency. In that case, the correlation output is given
as

y�m, n� � ��1��
p�1

P

Cp*�k, l � Xp�k, l �� , (2)

where Cp�k, l � � ��cp�m, n�� and Xp�k, l � � ��xp�m,
n��. ���� and ��1��� represent the forward and in-

verse discrete Fourier-transform operations, respec-
tively. Within the PCF architecture, we employ the
formulation from the current state of the art, the
MACH filter.17

For a set of N training images, the average training
image for the pth channel is defined by

Mp�k, l � �
1
N �

i�1

N

Xp
i�k, l �, (3)

where Xp
i�k, l � represents the ith training image of

the pth input channel. We define the cross-power
spectrum of the training set for the pth and qth input
channels as

Dpq�k, l � �
1
N �

i�1

N

Xp
i�k, l � Xq

i*�k, l � (4)

and a spectral variance term as

Spq�k, l � � Dpq�k, l � � Mp�k, l � Mq*�k, l �. (5)

Using these quantities, we define the cross-channel
spectral statistics as

Bpq�k, l � � �Spq�k, l � � 	Dpq�k, l � � 
�pq, (6)

where the term �pq is simply the mean value of the
spectral variance term, Spq. The constants �, 	, and

 are used for optimally trading between distortion
tolerance, noise tolerance, and correlation energy
minimization. The interested reader is referred to
Carlson39 for further details about the use of these
parameters in the design of MACH filters.

Central to the strength of PCF theory is the fact
that each filter is a conglomerate influenced by the
spectral content of all the input channels. Specifi-
cally, each filter is influenced by the power spectral
density of its own inputs as well as the cross-spectral
density between its input channel and all the others.
The term Bpq�k, l � of Eq. �6� contains the collective
spectral terms used in the derivation of the MACH

Fig. 1. SCF architecture. The PCF provides a way to simultaneously correlate all subbands. Each subband takes its own input channel
and thus its own PCF. We use an analogous structure for each level of the subband decomposition.
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filter �see Mahalanobis and Vijaya Kumar17�, with
modifications made to reflect multiple input chan-
nels. Consequently, the PCF solution analytically
optimizes the same performance criterion as the
MACH filter but with respect to the cross-channel
statistics.

Using matrix–vector notation, we denote the cross-
spectral statistics in Eq. �6� by a block-diagonal ma-
trix Bpq. Further, let mp be the mean image of the
pth channel also expressed as a vector. The two-
channel PCF solution is then given by

�c1

c2
� � �B11 B12

B21 B22
��1�m1

m2
� , (7)

where cp is the optimum correlation filter vector for
the pth input channel. Thus the PCF amalgamates
information from all input channels to obtain the best
set of correlation filters that simultaneously process
all inputs and combine them into a single result.
Essential to the filter synthesis is that the system
estimates the mp and Bpq terms over a large number
of inputs representative of the objects under study
�i.e., a training set�. Certainly, Eq. �7� is easily ex-
tendable to N input channels. Detailed information
regarding the solution to the inverse of the general-
ized form of the matrix in Eq. �7� is provided in Ma-
halanobis and Vijaya Kumar.1

5. Downsampling Effects in Coefficient-Domain
Processing

Subband coders downsample by 2 between levels of
decomposition. This operation produces different
subband responses to single-pixel-shifted copies of
the original input image. Herein lies the crux of the
issue. For example, assume an object at some ref-
erence point in the original image has produced a
one-level subband decomposition. �We call this the
reference decomposition.� Shifting the original im-
age by one pixel in any direction will result in a
similar yet distinctly different pattern in a second
subband decomposition. This is because, after the
low-pass and high-pass filters are applied to the orig-
inal image, only every other pixel remains in the
image representation at level one. The issue is more
of a problem for the upper subbands because of the
high-frequency nature of the data; however, it is still
present in the subband containing only low-
frequency components �also known as the LL sub-
band�. We illustrate the issue for the LL subband in
Fig. 2.

Now from the reference point, a two-pixel shift of
the original image in any direction will produce the
exact same decomposition pattern �ignoring bound-
ary effects� at level one as the reference decomposi-
tion. However, the output will be translated by one
pixel. This type of displacement is not an issue for
correlation filters. Correlation filters are well
known for their shift-invariant properties12; thus
they are well suited for recognizing translations of
the pattern they are trying to match. They are not,

however, downsampling invariant, nor are they very
downsampling tolerant.

Furthermore, the downsampling issues are present
and multiply on every level of the decomposition.
Although the first level has only four possible pat-
terns, the second level will produce four variations of
each of them. Recursive downsampling leads to a
tetradic tree �i.e., a tree branching fourfold� of pattern
variations. Moreover, when processed with identi-
cal correlation filters, similar yet distinctly different
patterns produce dissimilar correlation surfaces.

To mitigate the downsampling effects of a subband
coder, we propose two complementary solutions.
The first requires synthesizing the correlation filters
over multiple shifts of the training data. The second
modifies the subband decomposition’s QMF proper-
ties to account for correlation between neighboring
pixels in the training data. We designed the two
solutions to work in concert with each other; the first
was developed with the high-pass information in
mind, whereas the second was constructed primarily
for the low-pass information. SCFs may use these
two solutions separately or together to substantiate
downsampling tolerance.

6. Incorporating Downsampling Tolerance through
Training

As elucidated in Section 5, single-pixel variations in
the placement of the original image produce differing
subband images �excluding edge effects�. The algo-
rithm described here frames the following question:
Is it possible for a correlation filter to accommodate
these variations by training over multiple shifts of
each training image?

In reference to a one-level decomposition, the train-
ing algorithm we use incorporates each input image
four times: once in its original state, once after the
image undergoes a single-pixel shift up, again after
we translate the image by one pixel to the left, and yet
again after we shift the image up and to the left one
pixel in each direction. We utilize a circular shift
technique so that the first column of x�m, n� becomes
the last column of the shifted image. Figure 3 de-
picts such a procedure.

We then employ this procedure at each level.
That is, at level two, the LL subband from level one
acts as the input image; it is shifted the requisite
number of times, and the four subband images on
level two make up the PCF channel inputs. All ex-
periments in this paper employ the training tree
structure of Fig. 3.

The above procedure is but a subset of the set of
shifts necessary to cover all the downsampling vari-
ations. To cover all possibilities, level two would
have to incorporate four shifts for each of the four
shifts in level one, and so on at each level, spawning
a proliferating tetradic tree of training images.
Such a massive training set is a large and unreason-
able burden.
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7. Incorporating Downsampling Tolerance through
Quadrature Mirror Filter Design

To avoid an exploding tree structure for training, we
modify the QMF bank of the subband coder as a
second and complementary method of instilling
downsampling tolerance in the system. If the LL
subband response is sufficiently robust, the tree used
for shift training becomes linear, as discussed in Sec-
tion 6. This idea gives rise to the following question:
Can we tune the QMF used for image compression to
compensate for the downsampling within the sub-
band coder?

A. Our Baseline Qualified Mirror Filter Design

A detailed description of our approach to QMF design
is given in earlier publications.40,41 It evolved from
the research of Walls and Mahalanobis,2 which intro-
duced a matrix representation of subband decompo-
sition based on the Hadamard transform. Central
to the design is the development of a matrix repre-
sentation, T, which combines the filtering and down-

sampling of the subband analysis filter, h0�n�, over
multiple levels in a matrix structure. Its rows are
shifted versions of h0�n�, appropriately padded with
zeros to implement the required filtering and deci-
mation. The matrix construct, T, collapses the com-
plete subband hierarchy into an aggregate structure
that provides a direct channel from input to output
and vice versa. A complete mathematical definition
of T is given in an earlier publication.40

More specifically, our approach to designing a per-
fect reconstruction QMF bank is to optimize the im-
pulse response of h0�n� until the error terms in Eq. �8�
are minimized. A sum of three error terms derived
from our design constraints40–41 form a function, f,
which we optimize numerically, via the MATLAB rou-
tine fminu. This approach,

f � �
i�j

�TTT�ij�
2 � �h0

Th0 � 1�2 � ��
n�1

Nf

h0�n� � �2�2

,

(8)

Fig. 2. Downsampling effect on the LL subband patterns at level one. The subband downsampling process is not shift invariant. We
illustrate the issue for the LL subband only, although the upper-band coefficients are most affected. Note that the four LL images shown
are not simply shifted versions of one another. Rather, they result from shifts of the original image. On close inspection, one can see
that the LL subband of each branch exhibits a different pattern. Furthermore, the problem explodes at the lower decomposition levels,
as each shifted version on level n spawns four shift variations on level n � 1.
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is a generalized form of other time-domain tech-
niques reported by Jain and Crochiere,42 and He-
mami and Gray,43 and Hemami.44 As in most QMF
design strategies, we design only h0�n� and derive the
remaining three filters from this single filter. The
terms h0�n� and h1�n� are the low-pass and high-pass
analysis filters, respectively:

h1�n� � ��1�nh0�n�, g0�n� � h0�n�,

g1�n� � �h1�n�. (9)

Likewise, g0�n� and g1�n� are low-pass and high-pass
synthesis filters, respectively.

By its nature, the QMF compacts the energy in the
upper subbands, forming a sparse representation.
Coupled with downsampling between levels, this
sparseness impairs object recognition, as detailed in
Section 5. In contrast, if one could stabilize the
QMF response between adjacent coefficients, then
the system could better tolerate the downsampling
effects. With this objective in mind, we add another
term, the downsampling tolerance criterion, to the
standard QMF design.

B. Equivocating the Quadrature Mirror Filter Response to
Input Shifts

Physically, the shift-sensitivity term refers to the dif-
ference of the QMF response to an image and its
single-pixel diagonally shifted copy. The two re-
sponses should be as similar as possible to compen-
sate for the downsampling of the subband coder in
both directions �horizontal and vertical�.

The autocorrelation matrix of the difference image,
d, is given in Eq. �11�:

d�m, n� � x�m, n� � x�m � 1, n � 1�@�m, n�, (10)

Rd � E�ddT�. (11)

We define the shift-sensitivity measure in the LL
subband as a filtering operation. Let h0�m, n� and
h1�m, n� �or h0 and h1 in vector notation� represent
the QMF filters used for the low-pass and high-pass
analysis operations, respectively. Because the LL
subband requires a low-pass filter in both directions,
we define the shift-sensitivity measure with that in
mind. In effect, the shift-sensitivity term, �, is a
scalar measure of the difference between two low-
pass QMF responses: �1� that elicited from an orig-
inal image and �2� that resulting from a single-pixel
diagonally shifted version of the image:

� � h0
TRdh0. (12)

In addition, we are interested in measuring a uni-
directional shift sensitivity in the upper subbands.
Two of the upper subbands �LH and HL� require
low-pass filtering in one direction and high-pass fil-
tering in the other. Hence the equation for � given
below incorporates the effective response for the HL
and LH subbands along with the LL response:

� � h0
TRd�h0 � h1�. (13)

Although we attempt to constrain the shifted re-
sponse of the QMF along only the low-frequency
paths of the subband decomposition, the resulting
QMF still loses some of its energy compaction.
Therefore we balance the shift-sensitivity term with
an energy-compaction term. Together, they form
the downsampling tolerance constraint.

C. Energy Compaction

Variance of a subband distribution is one measure of
its energy compaction or compression capability.
Smaller variance corresponds to more compression.
We provide a similar measure for our energy-
compaction term. We define the energy-compaction
measure as a derivative of only the HH upper sub-

Fig. 3. Partial tetradic training tree for training over image shifts. Only the LL subband of the original placement spawns four shifting
branches. Thus there are 4N training images per subband of each level, given N images in the original training set. This is the training
method we employ in this paper.
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band by performing a high-pass filtering operation in
both directions on the autocorrelation matrix, Rx, of a
training image, x:

� � h1
TRxh1, (14)

where

Rx � E�xxT�.

Thus the energy-compaction term, �, is a scalar
measure of the variance in the HH subband resulting
from the training image. Its purpose is to counter-
balance the shift-sensitivity term and ensure that the
QMF bank maintains powerful compression perfor-
mance.

D. Shift-Tolerant Quadrature Mirror Filter Solution

Recall the baseline QMF design equation �8�. To
achieve a shift-tolerant solution, we add a fourth
term to this equation, which we call the downsam-
pling tolerance criterion, �ds:

�ds � �� � �1 � ���. (15)

Together, the error-shift term, �, and the energy-
compaction term � form the downsampling tolerance
constraint, where � is a parameter meant to balance
the two opposing functions.

Thus the full-fledged optimization equation for a
shift-tolerant QMF design follows as

f � �
i�j

�TTT�ij�
2 � �h0

Th0 � 1�2 � ��
n�1

Nf

h0�n� � �2�2

� 0.2�h0
TRd�h0 � h1� � �1 � ��h1

TRxh1�, (16)

where h1�n� is given by Eqs. �9� and autocorrelation
matrices Rd and Rx are defined in Eqs. �11� and �14�.
We scale the downsampling tolerance constraint by
0.2 so as not to overshadow the important QMF prop-
erties.

As in the design of the standard QMF, we use
numerical optimization to find the coefficients of
h0�n� that minimize the function f. Note that the R
matrices are computed a priori and remain un-
changed during the iterative optimization; � is also a
constant parameter. The T matrix and high-pass
filter h1�n�, however, derive from the low-pass filter
h0�n� and thus are computed at every iteration. The
image we use to compute the R matrices is one of the
preprocessed training images, which is exemplary of
the image statistics of the entire data set.

An earlier publication40 examines the effects of � in
detail. We select a value of � � 0.7 because it pro-
vides significantly more shift tolerance than the base-
line QMF without a large drop in either compression
power or reconstruction performance. Table 1 re-
ports the performance metrics achieved by the base-
line QMF and our optimized shift-tolerant QMF.
For the remainder of this paper, all results reported
for the optimized QMF use � � 0.7 in Eq. �15�. Fig-
ure 4 diagrams the coefficients of h0�n� for the shift-
tolerant optimized QMF with the baseline QMF

coefficients shown for comparison. The shift-
tolerant QMF deviates dramatically from the base-
line filter.

We show in Fig. 5 that the low-pass frequency re-
sponse of the shift-tolerant QMF is similar to a band-
stop filter. That is, it tries to attenuate the
frequencies that most affect the shifted response.
These frequencies are probably related to the size of
the objects under investigation. Very small objects
elicit an attenuation at higher frequencies. In addi-
tion to this frequency selectiveness, the shift-tolerant
QMF unexpectedly magnifies some of the higher fre-
quencies. For comparison, we display the low-pass
frequency response of our baseline QMF in the same
figure.

8. Performance

Finally, we may report on the performance of the
SCFs. The first set of experiments examines the
SCFs’ ability to overcome the downsampling effects of
the subband coder. We assess the two proposed so-
lutions �incorporating downsampling tolerance
through training and designing a downsampling tol-
erant QMF� both separately and together. We per-
form this assessment at only level one of the subband
decomposition over unquantized image data. This

Table 1. Performance Metrics of the Baseline and Shift-Tolerant QMFa

Measure Baseline QMF Shift-Tolerant QMF

PSNR 105 dB 67 dB
MSE 2 � 10�6 1 � 10�2

Shift-sensitivity metric 317 239
Compression metric 4.9 2.4

aPSNR and MSE are reported from a three-level decomposition
of one of the preprocessed BMP training image. The filter has
better performance when the shift-tolerant metric is smaller and
when the compression metric is larger.

Fig. 4. Shift-tolerant QMF time-domain response. The shift-
tolerant QMF values are quite different from our baseline QMF.
The three values at its center are reduced, whereas the remaining
sidelobes increase in magnitude.
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set of data allows us to select one method for SCF
algorithm definition.

Using the algorithm selected in the first set of ex-
periments, we then evaluate the multiresolution per-
formance of SCFs in a second set of experiments. In
this case, we investigate system results at each level
of the subband decomposition. Additionally, we
characterize the performance over increased quanti-
zation �i.e., decreasing bit rate�.

1. Experiment Conventions. Both sets of experi-
ments observe the following conventions.

• A MACH recognition filter was built during
training for each of three object classes: a �BMP�
Bradley fighting vehicle, a BTR �Bronyetransporter�
armored personnel carrier, and a T72 tank.

• Object classification is determined by one’s
thresholding the peak-to-sidelobe ratio �PSR� of the
correlation surface.45

• Objects that produce subthreshold PSR values
are classified as rejections.

• Training is done with the original �i.e., unrecon-
structed and unquantized� image data.

• Images are assumed to be preprocessed46 prior
to any compression.

2. Image Data. We selected the public Moving
and Stationary Target Recognition �SAR� 1-ft-
resolution image database �1 ft � 0.3048 m�.

• The SAR imagery has 2-, 4-, and 8-ft resolutions
at a one-, two-, and three-level subband decomposi-
tions, respectively.

• All the images were cropped to size 64 � 64
pixels, which contained the entire vehicle.

• The training set held 30 BMP, 29 BTR, and 28
T72 images at 0–45° views and 17° elevation.

• The test set held 24 BMP, 28 BTR, and 27 T72
images at 0–45° views and 15° elevation.

3. Parameter Settings. We use the following pa-
rameter settings for all experiments in this paper.

• PCF design: � � 0.2, 	 � 0.8, and 
 � 0.05
Eq. �6��.

• Baseline QMF design: filter length Nf � 16
Eq. �8��.40

• Shift-tolerant optimized QMF design: Nf � 16
and � � 0.7 Eq. �16��.

• PSR thresholds: 6, 5, and 4 at levels one, two,
and three, respectively, in the decomposition.

A. Downsampling Tolerance Experiments

We have proposed two possible solutions to the down-
sampling effects inherent in the coefficient-domain
processing of SCFs. First, the filters may incorpo-
rate downsampling tolerance through training.
Second, the system may benefit from a shift-tolerant
QMF design. We examine their effects with the fol-
lowing question: Do the proposed solutions, either
separately or together, provide enough downsam-
pling tolerance for reasonable system performance?
To that end, we test four variations of the SCF algo-
rithm. The models tested are

1. SCFs that use the baseline QMF and tradi-
tional training techniques.

2. SCFs that incorporate the new training
method of training over shifts.

3. A system that decomposes the data with a
shift-tolerant QMF.

4. A system that employs both the new training
methodology and a shift-tolerant QMF.

As this is a proof-of-principle experiment, we test
with unquantized image data and analyze results at
only the first level of the subband decomposition.

Now, to evaluate a system’s tolerance to downsam-
pling, we must effectively process a set of test data
twice. That is, we must test with the images in one
position, then shift the data diagonally by one pixel
and reprocess the data, and finally compare the re-
sults. Consequently, we report two sets of results
for each of the four SCF models tested. Further-
more, to remove another operating variable, we test
on the training set of images. This is because the
training images have an established reference point
for the image translation. That is, we know the sys-
tem should perform optimally to the training set in its
original position. We do not know what the refer-
ence position is with the test images.

1. System Performance
A summary of the system performance metrics is
shown in tabular data. Table 2 reports the recogni-
tion measures, and Table 3 provides the reconstruc-
tion metrics. Note that downsampling tolerance is
most exemplified by stability across the two data sets.

Overall, the system does fairly well on the data set,

Fig. 5. Shift-tolerant QMF frequency response. The shift-
tolerant QMF �solid curve� forms a stop band, as it tries to atten-
uate the frequencies that most affect the shifted response. The
baseline QMF frequency is shown as a dashed curve for compari-
son.
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which we expected because we are testing on the
training set. It is unclear why the results on the
unshifted data �i.e., the exact versions we trained on�
were not 100% correct when the baseline QMF was
used. Although the decomposition contains enough
information to reconstruct the original image, it is not
the same information as in the original image. Per-
haps the information at a one-level decomposition is
not linearly separable. In comparison, a quick test
of the training data in the uncompressed domain ren-
ders 100% correct classification. The baseline QMF
does, however, give reasonable reconstruction perfor-
mance with a peak signal-to-noise ratio �PSNR� of
105.

2. Discussion
The shift-tolerant QMF–shift-training system ap-
pears to be the most stable and thus the most tolerant
to the downsampling effects of the subband coder. It
also provides the best recognition results. The base-
line QMF–shift-training system is also fairly stable,
providing near the optimum recognition results, but
in addition achieves a 57% improvement in the PSNR
reconstruction metric.

From this small experiment, it appears that incor-
porating shifted versions of the input images in the
training set has the most impact on downsampling
tolerance. Incremental improvements are made by
optimization of the QMF for shift tolerance but at a
larger cost in image-reconstruction performance.
We recommend that the shift training be used alone
or in conjunction with the shift-tolerant QMF but
note that the shift-tolerant QMF is not effective when
used by itself. The baseline QMF employed in this
paper exhibits reasonable downsampling tolerance.

B. Experiments Detailing Multiresolution Analysis and
Quantization Effects

In this set of experiments we assess the performance
of SCFs at all resolutions in the subband decomposi-
tion. In this case we are no longer concerned with
downsampling tolerance but with performance over
the test set of images and the implications of declin-
ing bit rate. This set of experiments was designed
with the following two questions in mind.

• Which of the SCF systems outlined at the be-
ginning of Section 8 proves capable at lower levels of
resolution?

• How will compression degrade recognition per-
formance at each level of resolution?

Corresponding with the architecture of SCFs out-
lined in Section 4, we decompose the image only to
the level required for each experiment below. Thus
the quantization tables will be different for the dif-
ferent levels. That is, quantization of a level-two
decomposition has to quantize the data effectively at
both levels one and two. A level-one decomposition,
however, quantizes the information only at level one.

1. System Selection
We considered both the shift-tolerant QMF–shift-
training system and the baseline QMF–shift-training
system for the multiresolution experiments. We
performed an initial review with unquantized test
data, with results reported in Table 4.

Observe that the shift-tolerant QMF does not du-
plicate the success of the baseline QMF system on
levels two and three. This is probably due to the

Table 2. Recognition Metrics for the Four SCF Systemsa

SCF Model Tested

Reference Test Data Shifted Test Data

Pc �%� Pe �%� Pr �%� Pc �%� Pe �%� Pr �%�

Baseline QMF–traditional training 97.7 2.3 0 95.4 4.6 0
Baseline QMF–shift training 98.9 0 1.1 97.7 1.15 1.15
Shift-tolerant QMF–traditional training 96.6 3.4 0 94.3 3.4 2.3
Shift-tolerant QMF–shift training 98.9 0 1.1 98.9 0 1.1

aWe show the probability of correct classification, error, and rejection for both the original training data and the same set after a diagonal
shift of one pixel has been applied to all the images. Equivalent results between the two data sets indicate good downsampling tolerance.

Table 3. Reconstruction Metrics for the Four SCF Systemsa

SCF Model Tested PSNR �dB� MSE

Baseline QMF–traditional training 105 2 � 10�6

Baseline QMF–shift training 105 2 � 10�6

Shift-tolerant QMF–traditional training 67 1 � 10�2

Shift-tolerant QMF–shift training 67 1 � 10�2

aReconstruction measures are due only to the QMF of the sys-
tem. Thus systems with the same QMF achieve the same perfor-
mance. Both PSNR and MSE are given from the reconstruction of
one of the BMP test images.

Table 4. Multiresolution Performance of Baseline and Shift-Tolerant
QMFa

Measure

Baseline
QMF–Shift

Training
Shift-Tolerant

QMF–Shift Training

Level one Pc 96% 93%
Level two Pc 85% 64%
Level three Pc 75% 54%
PSNR 105 dB 67 dB
MSE 2 � 10�6 1 � 10�2

aOne of the BMP test images provides the PSNR and MSE
values given above.
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lower PSNR and increased mean squared error
�MSE� of the shift-tolerant QMF. PSNR is impor-
tant not only for visualizing reconstructed data but
also for performing optimal representations at the
lower levels within a subband decomposition.
Therefore we selected the baseline QMF–shift-
training system for the remaining experiments. A
smaller choice of � Eq. �16�� may provide a better-
performing shift-tolerant QMF.

Also, note that, for both systems, results decline as
we go further into the decomposition. This is an
expected consequence of multiresolution. As resolu-
tion is decreased, patterns become more ambiguous
and thus harder to discriminate.

2. Results
The following data characterize the performance of
SCFs over increased quantization �i.e., decreasing bit
rate�. To compress the data, we employ a simple
compression scheme: We use a uniform step size to
scalar quantize the subband coefficients and then as-
sume the data will be transmitted by an entropy
coder with variable length codes and a finite-length
codebook. Figures 6, 7, and 8 illustrate the object-
recognition measures Pc, Pe, and Pr, respectively, for
a SCF system at each of the three levels of decompo-
sition as a function of bit rate. We also display the
corresponding reconstruction metrics PSNR and
MSE as we vary the bit rate in Figs. 9 and 10, re-
spectively.

Observe that all three of the recognition-
performance curves �Figs. 6–8� possess characteris-
tics similar to that of a rate-distortion curve. That
is, they maintain good performance down to very low
bit rates and then drop off quickly. The Pe curves
display some deviations, probably owing to the small
sample size. We see a slight drop off in performance
�Pc curves� at approximately 2 bits per pixel �bpp� for
the first level and around 0.3 bpp on the second and
third levels. The significant drop off occurs at 0.25,

0.0625, and 0.05 bpp on the first, second, and third
levels, respectively.

Recall that the purpose of performing object recog-
nition at lower resolutions is simply to execute a fast,
cursory search for the object. Thus high recognition
accuracy, while desirable, is not critical. A more de-
tailed search at full resolution can be done later on
the areas that the low-resolution search deems inter-
esting. At lower levels of resolution, it is more im-
portant to have a low rejection rate. Even an error
in classification can flag the application to search
more thoroughly at a higher resolution of the data.
The SCFs exhibit this trait down to compression ra-
tios of at least 4:1 as shown in Fig. 8.

3. Discussion
Several observations are in order. First, we note
that these results are slightly worse than the Walls
and Mahalanobis results2 that report good perfor-
mance results up to compression ratios of 200:1. That

Fig. 6. Probability of correct classification versus bit rate. Fig. 7. Probability of error in classification versus bit rate.

Fig. 8. Probability of rejection versus bit rate.

6484 APPLIED OPTICS � Vol. 42, No. 32 � 10 November 2003



previous study, however, is much different than that
presented in this paper. The authors fully recon-
structed the image from a quantized subband decom-
position and performed recognition on the full-
resolution �albeit reconstructed� image.2 Moreover,
they employed a sophisticated coding technique, the
embedded zerotree wavelet coder,46 whereas our re-
sults use the simplistic coding method outlined above.
The embedded zerotree wavelet is well known to pro-
duce some of the best compression rates currently
available for image data.

Second, we observe that SCFs at levels two and
three maintain their initial performance at lower bit
rates than level-one SCFs. This is primarily due to
the fact that the higher levels require more bits to
encode each subband, causing subband dropping to
occur earlier. At the bit rate of 0.5 bpp, the quan-
tizer does not have enough bits to code all the sub-
bands effectively on level one and encodes the HL,
LH, and HH subbands with zero bits �effectively
dropping these subbands�. The LL subband is then

encoded at 2 bpp, and we maintain performance until
0.25 bpp, when the quantization of the LL subband
becomes too great. Table 5 displays the bit rates
that require an empty subband for each level of de-
composition. We see from Table 5 that levels two
and three retain more subbands at lower bit rates.

This is expected, as their smaller size requires
fewer bits for full encoding. Finally, we note that at
low bit rates the output correlation surfaces of the
SCFs contain no aliasing components. Even when
the bit allocation must zero out certain subbands, the
PCF architecture still renders a complete correlation
surface.

4. Conclusions
The following conclusions address the two questions
presented earlier.

• A lower PSNR hurts the performance of the
shift-tolerant QMF–shift-training system at lower
levels of resolution. We selected the baseline QMF–
shift-training system for our multiresolution analy-
sis.

• Performance declines on the lower levels of de-
composition.

• Reasonable performance is achieved at com-
pression ratios of 32:1, 128:1, and 128:1 at decompo-
sition levels one, two, and three, respectively.

• The SCF system does not produce aliasing at
the correlation output, even at low bit rates.

9. Future Extensions

In this section we provide a brief synopsis of possible
extensions to the SCF system discussed so far.
First, our marriage of PCFs with a subband decom-
position currently weights all the input channels
equally. It is simple to scale each input channel �i.e.,
subband output� differently, which may be fruitful for
some applications. Given that most of the down-
sampling effects arise in the upper subbands, atten-
uating their output response may actually improve
the general performance. In addition, a system may
want to apply a weight vector to the spectral terms of
Eq. �1� to amplify �or attenuate� specific frequencies.

Fig. 9. PSN ratio versus bit rate.

Fig. 10. Reconstructed image MSE versus bit rate.

Table 5. Subbands Dropped at Low Bit Rates

Approximate Rate �bpp� Subbands Dropped

1 On level one: HL, LH, HH
On level two: HH
On level three: HH

0.5 On level one: HL, LH, HH
On level two: HH
On level three: HH

0.25 On level one: HL, LH, HH
On level two: HL, LH, HH
On level three: LH, HH

0.125 On level one: HL, LH, HH
On level two: HL, LH, HH
On level three: HL, LH, HH
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One extreme case of this scenario would be to drop
the HH subband completely. This subband has the
least tolerance to downsampling. Not using its cor-
relation response may improve performance.

A second suggestion we have is to try the minimal
training method outlined in Section 6. In addition,
we recommend integrating all the subbands from a
multilevel decomposition �that is, incorporate sub-
bands from more than just one level�. This modifi-
cation, however, will require postprocessing because
the correlation responses from different levels vary in
size.

10. Summary

The SCF system overcomes the downsampling effects
of a subband coder and offers multiresolution object
recognition. Novel contributions include

• A new pattern-recognition algorithm that uses
correlation filters synthesized in the subband coeffi-
cient domain and allows for object recognition at the
multiple resolutions of a subband coder by operating
directly on the subband coefficients.

• A new training methodology to accommodate
the downsampling of the subband coefficients.

• A novel method of jointly optimizing the com-
pression capability of a QMF subband filter and the
recognition performance of a correlation filter to com-
pensate for downsampling in the subband coeffi-
cients.

Of the two proposed methods for downsampling
tolerance, training over multiple shifts of the data is
the more effective. Optimizing the QMF for down-
sampling tolerance offers an additional slight im-
provement in the downsampling tolerance, but the
resulting decreased fidelity of the QMF transform
impairs recognition accuracy. In summary, we
achieve the correct classification performance de-
noted in Table 6. A more sophisticated encoder
would improve the SCF performance at low bit rates.
Another benefit of the SCF system is that its output
does not exhibit aliasing, even when low bit rates
require the encoder to drop whole subbands of infor-
mation.

In conclusion, we have answered the questions is-
sued at the beginning of this investigation.

• The SCF performs successful recognition for
data up to one eighth the resolution of the original
data, for compression ratios of at least 20:1. It can
still be effective at higher compression ratios, de-
pending on the level of resolution.

• For every reduction in input resolution of one
half, the SCF’s recognition accuracy decreases by ap-
proximately 10%.

• SCF performance effects a tuning curve similar
to a rate-distortion curve, allowing a user to select an
operating point, balancing requirements of recogni-
tion and compression.
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